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1 Introduction: The role of behavior-preserving diversity in re-
tarding attacks on information systems

Redundancy and diversity are often used to increase reliability and survivability in critical systems. Redun-
dant copies of crucial subsystems can serve as backups for one another, at least if they do not all fail at the
same time. We might expect that redundancy and diversity could confer the same benefits on information
systems facing malicious attacks, but this is not always the case. Redundant components serving the same
purpose are often vulnerable to the same attacks, and, to make matters worse, these attacks can often be
replayed at very little cost. As a result, the redundant components can all fail at the same time under a
barrage of identical, repeated attacks.

A classic example of this phenomenon is the 1989 Internet worm (see [24]). This program exploited a
vulnerability common to almost all of the systems that comprised the Internet at that time. The worm was
self-replicating, so the cost of launching it against every system on the Internet was the same as the cost of
launching it against a single system, at least in terms of human effort.

Viruses are another obvious example of an attack that is cheap to replay once it is developed, and viruses
also require little human effort after the are developed. But even if an attack does not spread under its
own power, it can still be repeated by encoding it as a script, since the replay of script requires little effort.
Such scripts are often published, and although this allows information systems to be immunized against
the attack, it also gives more people the ability to replay the attack. This also increases the number of
supposedly redundant systems that can be undermined in a relatively short time.

One proposed solution is to make redundant systems diverse as well. If the replicas of a critical component
were not vulnerable to the same attacks, we would expect redundancy to work as well in the face of malicious
attacks as it does in the presence of other adverse circumstances. We would not expect redundancy to thwart
an attack altogether, since that is not its purpose, but we would expect a redundant system to survive
significantly longer than a system with no redundancy. The goal of this report is to quantify the benefits
that can be obtained when redundancy and diversity are combined.

The work reported here has three major components. First, we report on the development of an analytic
framework for judging the success of diversification schemes at retarding malicious attacks (Section 3). Here,
we attempt to quantify the relationship between the amount of work needed by a defender to achieve a certain
level of diversity, and relate it to the amount of work needed by an attacker to subvert the resulting system.
Second, we report on a prototype system for automating the creation of diverse programs (Section 4).
This is, in fact, a general-purpose mutation system wherein the modification of software is controlled by
mutation scripts, or meta-programs that drive the mutation of source code. Finally, we report on a further
prototype system for boosting information-system survivability by means of diversity (Section 5.1). This
system monitors the behavior of programs and ensures their compliance with semantic constraints describing
their intended behavior, so that undesired behavior can be detected. Monitoring all aspects of a program’s
semantics would be infeasible, but in a diverse system, different replicas of a program can monitor different,
randomly selected aspects of software behavior.

Before presenting the detailed description of our work and results, we give a high-level summary in the
next section.

2 Summary of Results

2.1 Summary of work performed

2.1.1 A framework for measuring the efficacy of software diversity in retarding malicious
attacks

The first task of this effort was to construct a framework for quantifying the effectiveness of diversity in
combating malicious attacks. In particular, the amount of work needed by the attacker to overcome a
certain level of diversity was to be compared to the defender’s effort in creating that diversity.

Since there are several sources of nondeterminism in this problem, such as the attacker’s choice of attacks
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and the defender’s choice of diverse systems, it seemed desirable to use a probabilistic framework. The most
obvious approach would be to use an analogy with software testing. With such an analogy the attacker’s goal
(like that of a software tester) would be to break the program, and we could describe the attacker’s behavior
in probabilistic terms the same way test inputs are often described by statistical models (see [17, 19]). The
problem with such an approach is that it may be impossible to describe an attacker’s behavior with any
useful probabilistic model.

However, it might be possible to model the defender’s behavior with statistical methods. In particular,
we can simply ask the defender to behave randomly in some respects, if such behavior enhances security. We
found it useful to assume that the defender has some pool of potential replicas, and chooses one or more of
these at random when creating a diverse system. Under this assumption, a very natural measure of diversity,
at least with respect to a given attack, is the probability that a given replica will withstand the attack.

This measure of diversity is hard to put into numbers without knowing what attacks will be used and
what replicas the defender has available. However, we can use this number as a variable, and ask: “if the
potential replicas have a given level of diversity, how much does the defender gain from using redundant
replicas?” Thus, we might create a curve showing the defender’s work-factor on one axis and the attacker’s
work-factor on the other. The slope of the curve might depend on the (unknown) diversity factor, but we
can still use the shape of the curve to determine what payoff redundancy will have for the attacker.

The model we developed allows us to describe a fairly rich variety of attack scenarios. Unfortunately,
there are many scenarios where redundancy does not pay off satisfactorily. In these scenarios, the attacker’s
work factor only grows logarithmically compared to the defender’s work-factor. This happens because of
a shotgun effect that benefits the attacker: an attack intended to defeat one replica may actually defeat
many. Although there are many cases where this does not happen, especially the case where the attacker has
limited time or a limited pool of attacks, this result raises a question about the ultimate utility of diverse
systems.

2.1.2 A general-purpose, configurable software mutation system

To investigate the practical aspects of software mutation as a means of information system diversity, we
constructed a general purpose mutation system that works by modifying parse trees. The system is driven
by mutation scripts that specify how the program is to be changed. Such a system has several potential
applications in information system security:

• It allows generalized software patching. Since our system recognizes features of the parse tree, and
not features of the source code as standard software-patch programs do, a single patch script can be
applied to many different programs. For example, we wrote scripts that insert buffer-overflow guards
on all local stacks in a program, and ones that prevent programs from using the stack altogether by
changing stack-allocated variables to heap-allocated variables.

• Mutation scripts can be used to insert code that monitors program data. We previously used software
instrumentation to insert checks for violations of security policy into programs, but that system was
not general-purpose. Program behavior can also be monitored for purposes such as intrusion detection
and program state inference.

• The intended role of the system was as a tool to boost information system diversity by randomly
selecting and applying mutations that preserve the intended semantics of the program.

Unfortunately, we found the programming of mutation scripts to be clumsy work, for reasons discussed
in Section 4.2. It also seems as though completely random software mutation — even if the mutants are
semantically equivalent to the original code — is not a good approach to software diversification; the results
described in Section 2.1.1 are only one reason for coming to this conclusion. However, part of our proposed
work involved the extraction of semantic information from programs in order to determine when mutants
preserved the semantics of a program. We shifted our focus by placing more emphasis on the use of seman-
tic information, and thus exploring new, semantically based approaches to creating software diversity (as
opposed to the syntactic approach of software mutation.) This is described in the next section.
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2.1.3 A system for automatically extracting behavioral constraints from programs

Originally, we proposed to use semantic analysis as a way to determine if a mutant was semantically equivalent
to the program being mutated. This was meant to ensure that the mutated program would have the same
functionality as the original — the intent was to alter unintentional (or nonessential) semantics of a program,
not to prevent it from fulfilling its intended purpose. However, in light of the apparently limited success of
software mutation, we were also in search of improved methods through which information systems could be
made diverse.

The methods we had intended to use to determine semantic equivalence, taken from existing work in soft-
ware mutation testing, proved inadequate for our purposes because there were too many heuristic elements.
Instead, we developed a new technique for representing program semantics, based on set constraints [13],
constraints that specify execution paths, and a technique we developed for representing loops inductively.
We developed software for extracting such semantic information from C/C++ programs.

We found that such semantic constraints could be used to monitor the integrity of executing software.
Indeed, the kinds of attacks we had hoped to delay by means of software mutation could apparently be
detected as deviations from the semantics we automatically extracted from source code. For example, viruses
and buffer-overwrite attacks change the behavior of an executing program, and this change in behavior can
be detected through the program’s failure to obey the constraints we extract. We constructed a prototype
that uses semantic constraints to detect deviant software behavior.

Two things differentiate our work from other existing systems for the extraction of software semantics,
aside from the fact that our system is meant to enhance information system security, which others are not.
First, our system is meant for use with procedural or object-oriented programs, while most existing systems
are meant to be used with functional or logic programs. Secondly (and more importantly) our system
explicitly recognizes that the extraction of semantic information is a difficult problem, not only because
some program constructs are hard to handle but because the number of constraints (hence the resource
consumption of a constraint-based technique) often grows exponentially in the size of the program being
analyzed. Our system takes these issues into account, and can still be used when only incomplete semantic
information is available. Specifically, we can simply monitor the program’s compliance with a subset of the
available constraints.

Here, diversity once again comes into play: if different constraints can be monitored independently
(our experience with the prototype suggests that they can) then there is diversity among the constraints
monitored within a particular program. Different constraint-sets can also be monitored in different copies of
a redundant program.

Furthermore, it seems possible to recover from deviant semantic behaviors, since the constraints not only
tell us when a program has deviated from its intended behavior, but also what the intended behavior was.
In principle, the program could be forced back into a correct state, although we have not implemented this
in our prototype.

Interestingly, our constraint based-approach can apparently be used to emulate the software mutation
technique we originally planned (though we were not able to implement this extension under the existing
contract). We can mutate the software constraints, instead of the original program, and if we do so, the
constraint-monitoring system can tell us what each mutant would have done. This gives us the same benefits
of an actual mutation system: we can detect when the mutants behave differently, and force the program
into the state determined by a particular mutant. Furthermore, since our constraint monitoring system can
monitor many constraints at once for a single program, we have an inexpensive way to maintain several
mutated programs running in parallel. Instead of running all of the redundant programs individually, which
requires special software or hardware to start the programs simultaneously and resolve differences in their
behaviors, we can simply calculate how the redundant programs would have behaved if they really had been
running in tandem.
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3 Details of the Analytic Framework

3.1 Introduction

3.1.1 Diversity in software engineering

Redundancy is often used to increase the robustness of information systems. A distributed system like
the Internet can continue to perform many functions, such as the routing of information, even when some
subsystems fail.

A more ambitious goal is to stop failures from happening altogether by having the redundant subsystems
perform the same functions at the same time. In this way, the desired function is still accomplished even
if some subsystems fail. Here, it is pointless to have many copies of a single program running at the same
time. Since software failures are caused by design flaws rather than aging or physical stress, all copies of a
program would replicate its design flaws, and since all copies are processing the same data, they would all
fail at the same time.

The proposed solution to this problem was to create a number of different programs from the same spec-
ification. Such programs could be developed by different programming teams working independently, and
the hope was that this would result in redundant programs that failed independently of one another. Unfor-
tunately, it was found [16] independently developed versions of a program did not always fail independently;
the independent programming teams sometimes make the same design mistakes. This makes it difficult to
determine the return on investment obtained from software diversification.

We can expect the same problem to be encountered when redundant copies of a program are subjected
to malicious attacks. Since it is cheap to replay attacks, making many copies of a single program would
not be cost-effective because they would quickly succumb to a single, repeated attack. On the other hand,
the redundant components may be vulnerable to the same attacks even if the defender tried to make them
diverse. In other words, the attempt to create diverse replicas may fail.

To make matters worse, some attackers may have better strategies than others. A skilled attacker may
apply techniques that are broadly effective overall, and thus subvert many replicas of a component. There
may also be an attack paradigm that is easy to apply to many replicas even if the attacks themselves only
subvert one replica at a time. Thus, a good attack strategy can also cancel the benefits of software diversity.

3.1.2 Average-case behavior and randomized diversity

In analyzing the survivability of a redundant system, we do not want to deal with the worst possible case,
because the worst cases are unrealistically bad. For example, the attacker might get lucky and destroy all
components of a redundant system with a handful of randomly selected attacks. The attacker might also
know the precise semantics of each component, and by sheer luck, happen to know an attack technique will
subvert each one. We would rather perform an average-case analysis than spend time and effort describing
situations that we hope will rarely if ever actually occur.

Thus, a statistical analysis suggests itself, all the more so since statistical approaches are so common
in other areas of software assurance. For example, software reliability analysis assumes that users and the
state of nature create certain conditions that may or may not make a program fail. If usage patterns and
environmental conditions are treated as random phenomena, one can quantify the program’s quality in terms
of a probability of failure. One could argue that a malicious attacker is like the user or the environment,
supplying inputs that may or may not lead to a breach of security (these are the attacks). One could then
say that an information system has a certain probability of being subverted by a given attack (analogous to
the probability of failure) and a certain probability of surviving a string of attacks (analogous to software
reliability).

Unfortunately, an attacker’s behavior may not be amenable to statistical analysis, since the attacker
intelligently seeks out a program’s weaknesses and focuses on them. We expect the attacker’s behavior to
be the result of conscious decisions in a constantly evolving strategy, so that future behavior cannot be
predicted by observing the past as is done in statistical prediction. Although one empirical analysis, [15],
found attacker behavior to possess properties that would make it statistically predictable, there is too little
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information at present to safely conclude that this is a general rule, especially since intuition suggests the
opposite conclusion.

Speaking in more general terms, we expect that attacks will not be chosen at random, but rather on
the basis of what seems most likely to succeed. Therefore, the choice will depend on the attacker’s talent
and general knowledge, on what the attacker has observed about the target system, what the attacker has
learned during previous attack attempts, and also on the general techniques and paradigms being used by
malicious attackers at the time in question. In short, past attacker behavior may not be useful in predicting
future attacker behavior, because to do so we must take into account an enormous number of factors and
contingencies that are difficult or impossible to measure.

This puts us in a difficult situation. On one hand, statistical approaches rely on past behavior to predict
future behavior when it comes to actually predicting what will happen in a particular situation. On the
other hand, if we want some sort of non-statistical assurance about the robustness of a redundant system,
we have to construct a system that is immune to malicious attacks, and then prove it to be immune. Unless
we are dealing with some pre-defined class of attacks and a relatively simple system, this can be difficult or
impossible. All of this suggests that we cannot confidently make predictions about the behavior of a system
that is being maliciously attacked.

However, we can still use an analytical framework to determine what factors influence the success or
failure of a redundancy in a system that is being maliciously attacked, and to say something about how
important each of these factors is. That is what we hope to do in this paper.

In this paper, our approach is to ask the defender to adopt a randomized strategy. This approach, which
has been used in other areas to facilitate the average-case analysis of algorithms, can also be used for that
purpose when we analyze the effects of diversity. The idea is that the defender has a pool of potential replicas
for each redundant component. This pool of replicas could actually be a database of software modules, or it
could be an abstract concept that arises when the defender uses a randomized process to create new replicas.

3.2 Framework

In this paper, assume that there are a number redundant, randomly selected subsystems that are under
attack. In principle, we want to know how many attacks will be needed to subvert all of the subsystems, but
since the subsystems are selected at random, we cannot know this with certainty. Instead, we have a certain
confidence that some subsystems will still survive after a certain number of attacks, or, conversely, a certain
confidence that all the subsystems will be destroyed. A confidence of either sort can be used to quantify the
effectiveness of the diversification scheme.

We find it useful to examine the problem at three levels of detail. First, we ask how likely it is that
a randomly selected subsystem will survive a given attack. This is the basic measure of how effective the
diversification scheme is: if the defender finds it hard to create a system that is immune to a certain attack,
then most subsystems will succumb, so that the probability of survival will be low.

Next, we ask how likely it is that a single subsystem will survive a series of essentially simultaneous
attacks. We call such a series of attacks a salvo. In this context, “essentially simultaneous” means that
anything the attacker learns from the outcomes of attacks cannot be applied in other attacks of the same
salvo. Likewise, if the defender has an intrusion response system, it cannot learn to recognize new attacks
soon enough to use that knowledge during the same salvo.

Finally, we consider the case where there are several redundant subsystems. We will ask how likely it is
that at least one subsystem will survive a series of attack salvos.

3.3 The probability that a randomly selected subsystem will survive one attack.

We begin by considering the effects of a single attack, which we regard as being fixed. In other words,
it is as if an attack has already been chosen, and the defender is charged with finding a subsystem that
will withstand the attack. This is done by selecting one of a pool of redundant, diverse systems, and the
defender’s chance of success is the probability of selecting a system that will withstand the attack.

The probability that a randomly selected system will survive a malicious attack is, in some sense, the
basic measure of the diversification strategy’s success. For example, the supposedly diverse variants of the
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Unix finger daemon may appear to use completely different implementations, but the developers may not
have known that some attacks exploit vulnerabilities in the C-language library. If each of the diverse copies
of the finger daemon use this library, they will all be vulnerable to this attack. If the attacker uses that
particular attack, the probability of selecting a daemon that survives the attack is zero; the attack destroys
all of them.

In some sense, this survival probability quantifies the diversity of the redundant systems. If the redundant
systems fail to be diverse in the sense that they all succumb to the same attacks, the survival probability
will tend to be low. On the other hand, if the redundant systems are never vulnerable to any of the same
attacks, the survival probability will be high. As an illustration, if the defender has 100 systems, no two of
which are vulnerable to any single attack, then the probability of selecting a system that survives a given
attack is 0.99.

Given that this basic survival probability reflects the diversity of the redundant subsystems, it would be
intellectually appealing to express the survival probability in terms of some natural measure of diversity.
Unfortunately, it is another matter to ensure that this measure of diversity is actually useful. It seems that
the defender’s most natural question is “how likely is it that the next replica I generate will be survive
the attacker’s next attack?” The author has not been able to find another basic measure of diversity that
reflects the practical problems of software diversification as well as this one. Therefore, we use the survival
probability as the basic measure of success for a diversification scheme, with respect to a single attack.

3.3.1 Example: choosing a secure server

The purpose of this paper is to say what factors affect the success or failure of a diversification scheme,
rather than to come up with exact predictions of what will happen when diversification is applied to a real
system. However, a concrete example will illustrate the concepts underlying our framework.

Suppose that some critical operation is to be carried out in the presence of malicious attacks. Redundancy
is achieved by making several sites available for carrying out the operation, and the defender randomly selects
the site that is to be used. The attacker will attempt to disrupt the critical operation. The attacker does
not know what site the defender will use, but this, in itself, makes no difference, because any attack can
easily be launched against every possible site.

Currently, we are concerned with what will happen if the attacker chooses some particular attack; suppose
that a particular Windows NT denial of service attack will be used. Of the sites available to the defender,
ten use Unix systems and are therefore immune to the attack. The other 21 sites use NT, but twelve of
these sites have installed patches that prevent the attack in question. Therefore, if the defender chooses a
site uniformly at random, the probability of surviving this particular attack is 22/31.

Note that the defender could simply choose one of the immune sites if it were actually known that this
particular denial-of-service attack would take place. However, we do not assume that this attack will actually
be used, much less that the defender actually knows it will be used. At present, we are only asking what
will happen if the attack takes place.

3.3.2 How easy is it to create diversity?

In an earlier example, we assume that a defender had 100 redundant replicas of a system, and that no two
of these were vulnerable to the same attack. In that case, it is easy to see that the survival probability
with respect to any attack is at least 99%; no matter what attack is used, the defender has a 99% chance of
selecting a system that is immune to it.

However, it may be a somewhat utopian world in which no two replicas are vulnerable to the same
attack. The more replicas are added to the pool, the more difficult it becomes for the defender to ensure
that this property continues to hold. When the the second replica is added, the defender only has to ensure
that it doesn’t share any vulnerabilities with the first replica, but when the thousandth replica is added,
the defender has to make sure that it has none of the vulnerabilities of the other 999 replicas. Thus, the
defender’s job seems to become more difficult as more replicas are added.

It is more realistic to assume that replicas are created according to some process that creates a certain
level of immunity to attacks. In the example of the last section, we might say that there was a certain
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chance of choosing Unix as the operating system at a given site, and if Unix were not chosen, that there was
still a certain probability of installing the patch that prevents the denial-of-service attack. Thus, a system
emerging from this “process” has about a 22/31 probability of being immune to the given attack.

In this situation, the number of redundant replicas does not have a great effect on diversity. If one million
replicas are created by the same process, and that process has a 70% chance of creating a system immune to
a certain attack, then the survival probability will be about 70% regardless of how many replicas there are.
Therefore, it is the quality of the replication process, rather than the number of replicas, that determines
the effective diversity of a redundant system. We will find this to be a continuing theme: under plausible
assumptions, the sheer number of diverse replicas does not greatly affect the success of a diversification
scheme.

3.4 The likelihood that an attack salvo will subvert a single server.

Once we have survival probabilities for attacks, we can easily bound the probability that an attack salvo
will subvert a server. Although we are still only considering the behavior of a single replica, we now find it
useful to account for the properties of the entire pool of replicas. For a fixed attack, we select n replicas and
define a behavior string for that attack, with respect to the replicas we have chosen. The behavior string
is just a string of ones and zeros; the ith element of the behavior string is 1 if the attack subverts the ith
replica, and zero otherwise. Clearly, if two attacks behave in exactly the same way for all replicas, then the
survival probability is the same for both attacks.

Given an attack salvo a, Let B(a) = {b1, b2, · · · , bn} be the set of behavior strings associated with the
attacks in a salvo. For a given behavior string, we can define ε(b, r) as the survival probability with respect to
b, given that the replica is selected at random from the set r (For the moment, r can simply be considered to
be the set of all available replicas, but later in the paper, we will find it useful to explicitly consider replicas
that are selected from certain subsets of this set.) Let D(b1), D(b2), · · · , D(bn) be the events in which the
randomly selected replica is subverted by an attack with behavior string b1, b2, · · · bn, respectively, then the
probability that one or more attacks subvert the replica is no larger than

∑
b∈B(a) P(D(b)). (It may be less

if there are dependencies between behavior of one attack and that of another.) But P(D(bi)) is just one
minus the survival probability with respect to attacks having the behavior string b; it is 1− ε(b, r). Thus, the
probability of a randomly selected replica being subverted by the salvo is at most

∑
b∈B(a)(1− ε(b, r)). If we

have a lower bound ε0 on ε(b, r) for all behavior strings b, then the probability of a replica being subverted
is at most |B(a)|(1 − ε0), where |B(a)| denotes the size of the set B(a).

This quantity can be greater than one, since it is only an upper bound on a probability rather than being
a probability in itself (when the bound is greater than one, it means that nothing useful came out of this
bounding method, since it only tells us what we already knew, namely that the probability of the replica
being subverted is less than or equal to one). We would like to use a bound that explicitly takes into account
the fact that the replica’s probability of being subverted is never greater than one. Thus, if R is a randomly
selected replica and a = {a1, a2, · · · , an} is a set of attacks, we define

F (a, r)
def=

{ ∑
b∈B(a)(1 − ε(b, r)), if

∑
b∈B(a)(1 − ε(b, r)) < 1;

1, otherwise.

Often the set of available replicas has some structure that affects the likelihood of an attack being success-
ful. For example, replicas that have been patched in order to repair a specific vulnerability will categorically
have a different survival probability from replicas that have not been patched, and replicas implemented
in different operating systems will have fundamentally different behaviors when they are attacked. This
makes it useful to partition the set of possible replicas, and perform an analysis like the one above separately
for each element of the partition. If we let r1, r2, · · · , rn denote the elements of such a partition, then the
probability of subverting a randomly selected replica is no greater than

∑
i

∑
b∈B(a,ri)

(D(b) ri)P(ri) =
∑

i

∑
b∈B(a,ri)

(1 − ε(b, ri))P(ri) ,

where (D(b) ri) denotes the probability that a randomly selected replica will be subverted by b, given that
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the replica is selected from the subset ri, and P(ri) is the probability of selecting a replica from the subset
ri.

3.4.1 Example: An artificially large number of attacks

In the example of Section 3.3.1, suppose that the attacker has several attacks available, 30 of which affect
NT systems, but one of which is effective against Unix. Nine of the defender’s ten available Unix platforms
have been patched and are not vulnerable to the attack. In this situation, it makes sense to partition the
platforms into those running Unix (call this set U) and those running NT (we call this set NT).

The probability of selecting a platform that will be subverted is less than

P

⎛
⎝ ⋃

b∈B(a,U)

D(b, U)

⎞
⎠P(U) + P

⎛
⎝ ⋃

b∈B(a,NT)

D(b, NT)

⎞
⎠P(NT) ≤ F (a, U)P(U) + F (a,NT)P(NT) .

Instead of selecting a platform uniformly at random, the defender may favor Unix systems, suspecting that
they are vulnerable to fewer attacks. Specifically, suppose P(U) = 0.7 and P(NT) = 0.3, so that the
probability of a successful attack is 0.7F (a, U) + 0.3F (a,NT). Note that all the NT attacks have the same
behavior string with respect to the Unix platforms; in all cases it is a string of ten zeros. The Unix attack has
its own behavior string, which contains nine zeros and a one. Thus, B(a, U) has two elements. Furthermore,
the survival probability for one of these two behavior strings is 1, since it represents the NT attacks. If the
survival probability for the other attack is 0.9 when a Unix-based replica is selected, then F (a, U) is at most
(1 − 0.9) = 0.1.

On the other hand, suppose there are 30 NT attacks, and that each NT attack has its own behavior
string with respect to the NT platforms, so that B(a,NT) has at most 31 elements. (The Unix attack also
has a behavior string of all zeros with respect to the NT platforms, but that may or may not be the same as
one of the behavior strings derived from the NT attacks.) As above, suppose that the survival probability
among NT platforms is 4/7 for each NT attack. Then F (a,NT) is at most |B(a,NT)|(1 − 0.57), but since
this is greater then 1, F (a,NT) is just 1. Thus the probability of selecting a server that will be subverted is
less than 0.7F (a, U) + 0.3F (a,NT) = 0.07 + 0.3 = 0.37.

Suppose the attacker increases the number of NT attacks to 100, but suppose that the survival probability
among NT attacks is still 0.57. The increased number of attacks may (or may not) make B(a,NT) larger,
but since the attacks are only effective against NT platforms, this can only make a limited contribution to
the probability of subverting a randomly selected replica. In fact, F (a,NT) was already as large as possible
before the new attacks were added, so our previous bound of 0.37 is unaffected by presence of the additional
attacks.

3.5 One or more salvos against many replicas

Our main interest is in redundant systems, that is, systems containing many replicas of critical subsystems.
In this section we develop a framework for dealing with such systems. Instead of selecting a single replica
at random, the defender now selects n such replicas. Our description of the attacker’s strategy is once again
based on behavior strings, but we are now interested in behavior strings on randomly selected sets of replicas.
Just as we defined the behavior string of an attack to be a string containing a 1 or a 0 for each replica,
so we can define the behavior string of an attack salvo. The string contains a 1 in the ith position if the
salvo subverts the ith replica, and otherwise the string contains a 0. If s is an attack salvo and r is a set of
replicas, we use B(s, r) to denote the set of behavior strings obtained if the attacks in s are applied to the
replicas in r.

If the defender randomly selects a set of n replicas Rn (e.g., Rn is a random variable), we are interested
in the expected value of |B(s,Rn)|, (that is, the expected number of behavior strings that can be observed
when the attacks are used against the replicas selected by the defender.)

This quantity, E(|B(s,Rn)|), is commonly used in machine learning to describe the diversity of hypotheses
generated by a learning algorithm. Here, we use it to describe the diversity of the set s of attack salvos.
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Our result for this section follows directly from a similar one that is well-known in machine learning [4].
If the survival probability of a single replica against an attack salvo (not just a single attack) is greater than
η for all salvos, and the defender selects a set of n replicas, then the probability that all replicas will be
subverted is less than

2E
(|B(s,R2n)|) 2−nη/2 (1)

(Note that R is raised to 2n instead of n; this results from a proof detail that is beyond the scope of this
report. The underlying proof is due to [4] and can be found in that paper). The physical interpretation of
this bound depends a great deal on the contents of an attack salvo. Indeed, this flexibility is the motivation
for expressing this result in terms of attack salvos when it could just as easily have been expressed in terms
of individual attacks. We illustrate the application of this bound with some examples.

We can use this inequality to find a lower bound�size of the attack salvo needed to subvert a redundant
system, if we have an upper bound on B(s,R2n). But note that it is only a lower bound. In the following
examples we will see cases where it is not positive. Since we already know that one or more attacks are
needed to subvert any system, a lower bound of, say, -7, is trivial and fails to tell us anything new. When
this happens, it means we have encountered a situation where the current framework is not helpful.

3.5.1 Example 1: Attacks that can be replayed cheaply

Consider a situation where new attacks are developed over time, but existing attacks can be replayed cheaply.
This reflects what often happens in reality; existing attacks are automated so that they can be replayed
instantly, but new attacks are developed at a comparatively slow rate. Often, the development of a new
attack takes place only after the accidental discovery of a previously unknown vulnerability.

We will model this situation by starting a new salvo each time a new attack is discovered. Because of
the comparatively slow pace at which new attacks tend to appear, we will say that the system recovers fully
between salvos. In other words, there are no cumulative effects from one salvo to the next, so we only apply
(1) to one salvo at a time, and if we want to see what happens over time, we simply apply (1) to the first
salvo, then to the second salvo, and so on.

Since attacks can be cheaply replayed, each salvo contains the newly developed attack as well as all the
old attacks. Thus, each salvo contains one more attack than the previous one, and we ask how large the
salvo has to get before there is a high likelihood of subverting the entire system.

However, in this example we will study the effects of redundancy in isolation. We will say that the
survival probability with respect to a single attack remains constant. Thus, the defender does not have an
intrusion response mechanism that prevents old attacks from being reused, since this would cause the survival
probability with respect to those attacks to go up over time. It also means that overall, each attack has
about the same effectiveness, which implies some minimum level of competency on the part of the attacker.

Since we are only considering one salvo at a time, |B(s,Rn)| is 1. We get η from the results of Section 3.4;
if the survival probability (with respect to one attack) is always at least ε, then the probability that one
randomly selected replica will be destroyed by an attack salvo is less than k(1 − ε), where k is the number
of attacks in the salvo. Thus the survival probability with respect to a single salvo containing k attacks is
at least 1 − k(1 − ε).

In this example, the bound (1) simply becomes

21−n(1−k(1−ε))/2, (2)

where n is the number of replicas. Since this is an upper bound on the probability that all replicas are
defeated, the attacker would like it to be large. For example, if the attacker wants to have a 99% chance of
subverting all replicas, it is necessary to make (2) larger than 0.99 through an appropriate choice of k. To
determine how many attacks the salvo must contain, assume that the attacker’s goal is to ensure that (1) is
at least as large as some constant δ. Thus, the attacker wants to choose a k such that 21−n(1−k(1−ε))/2 ≥ δ.
Solving this inequality for k, we see that the attacker should use at least

1 + 2/n log(δ/2)
1 − ε
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attacks. In fact, the number of attacks is less than 1/(1 − ε) regardless of the number of replicas or the
choice of δ. Thus, as far as this example is concerned, adding more replicas does not guarantee greater
survivability. Only if the the defender increases ε, the survival probability of a single replica with respect to
a single attack, does the survivability of the redundant system go up. But increasing ε would also increase
the survivability of a non-redundant system.

Since (1) is only an upper bound, using 1/(1−ε) attacks is a necessary condition for subverting all replicas.
It is not a sufficient condition, and in that sense, we have only failed to demonstrate that adding more replicas
increases the survivability of a redundant system. But it straightforward to show that the necessary number
of attacks only grows logarithmically in the number of replicas when the survival probability is high.

3.5.2 Example 2: Intrusion response by means of patches

Suppose we are in the same situation as in the previous example, except that the long period of time that
elapses between the development of new attacks allows the defender to patch up vulnerabilities to the old
attacks. Thus, an attack salvo doesn’t contain all past attacks (or if it does, those attacks do not effect
the behavior strings or the survival probability, so that the effect is the same as having only one attack per
salvo).

In the previous example, anything that happened during one salvo happened again in all subsequent
salvos, since all old attacks were replayed in each salvo. Thus, we did not lose any information by considering
only the last salvo. In this case, we have to consider all salvos because all of them are different, and each
salvo gives the attacker one chance to subvert the system.

As before, let us assume that we have a lower bound on the survival probability that is valid for all
attacks. In this case, this is also a lower bound on the probability that one replica will survive an entire
salvo, since there is only one attack per salvo. On the other hand, the need to consider all salvos means that
B|(a, Rn)| may be as large as the total number of attacks. Thus, if there have been k attacks and there are
n replicas, (1) becomes 2k2−nε/2. Solving for k as above, we see that the attacker needs δ2nε/2−1 attacks in
order to have confidence δ that all replicas will be defeated.

Here, the situation is completely different from the last example. The number of attacks needed to subvert
the system grows exponentially both in the number of replicas and in the survival probability. The difference
between this example and the last is that a single attack has to subvert all replicas. If the diversity of the
replicas is moderately large (e.g., the survival probability is moderately high) and the number of replicas is
large, then the likelihood of subverting all replicas with one attack quickly becomes miniscule. The attacker
must continue to launch attacks until the defender gets unlucky, in spite of considerable odds in the defender’s
favor.

3.5.3 Example 3: Delayed intrusion response

In the previous section, we described an intrusion response technique that is common but not usually
associated with the term “intrusion response.” Usually, intrusion response systems are assumed to detect
attempted intrusions automatically. Often, such systems are adaptive in that they learn to recognize new
attacks, but the system may have to see the attack more than once to do this.

To model such a situation (albeit somewhat crudely) we assume that an attack can be replayed k times
before the defender is able to prevent it from being effective. As in the previous, we model this situation by
using several salvos, because we need to account for the possibility that the attacker will get lucky at any
time during the attack process. Each salvo will contain a newly developed attack, but each salvo will also
contain k − 1 old attacks that are being replayed.

The probability of a single, randomly selected replica being subverted by a single salvo is at most k(1−ε).
As in the previous example, the number of behavior strings is no greater than the total number of salvos,
which, in this case, is the same as the number of new attacks that the attacker devises. Thus, (1) becomes

2k2−n(1 −k(1−ε))/2.

If we once again solve for as above, we see that

δ2n(1−k(1−ε))/2−1
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attacks are needed for the attacker to have confidence δ that all replicas will be subverted. Thus, as long as
k is not two large, the number of necessary attacks grows exponentially in the number of replicas.

(If k is large, the number of necessary attacks can be less than one according to this result. We know
that at least one attack is necessary to subvert the system, so in that case the bound becomes trivial and
tells us nothing that we did not know already. That means that our framework was not able to provide
meaningful lower bounds on the number of attacks needed to subvert the system.)

3.5.4 Example 4: A fixed number of attacks

For this example, suppose that the attacker uses an attack script, but does not have enough skill to develop
new attacks. We might expect that the defender, having seen the attack script as well, might have patched
the vulnerabilities that the script exploits, in which case the attack simply fails outright. However, for this
example, we assume that the defender has not systematically applied patches.

Since the attacker cannot change the likelihood of a successful attack, its success or failure depends only
on the defender. Therefore, we ask how many replicas the defender needs to be confident of surviving the
attack.

As before, we assume that the probability of a single replica being subverted is at most k(1− ε), where ε
is a lower bound on the survival probability against any individual attack in the script, and k is the number
of attacks in the script. The attacker has only one salvo to launch, so (1) becomes 21−n(1−k(1−ε))/2. This is
the same bound as in example 1, but here the attacker is unable to take advantage of that fact by increasing
k.

However, by comparing this example to example 1, we see that we cannot guarantee any benefit from
simply adding more replicas. Instead, it is necessary to increase the survival probability. Thus, the process
by which replicas are created must be improved, if possible.

(Of course, this can often be achieved if the defender knows the attack script. In that case, the necessary
vulnerabilities can hopefully be patched. If they can, the survival probability becomes 1, and as result the
value of k needed to subvert the system becomes infinite. It essentially becomes impossible for the attacker
to succeed.)

3.5.5 Example 5: Hyperdiversity.

Suppose the defender’s replicas can be partitioned into sets r1, r2, · · · , rn, in such a way that the members of
one subset are not vulnerable to any of the same attacks as the members of any other subset. (This might
happen if the replicas in different subsets employ different operating systems.) Let 1 − (D(b, R) R ∈ ri)
denote the survival probability given that a replica is selected from the subset ri. If we leave this probability
constant but increase the number of subsets, then the overall probability of a randomly selected replica being
subverted, namely

n∑
i=1

(D(b, R) R ∈ ri)P(R ∈ ri) ,

will stay the same if the defender has the same probability of selecting a replica from any of the subsets
(e.g., P(R ∈ ri) = 1/n for all i). We do, indeed, want the survival probability to remain constant when
we increase n, because we want to study the effects of increasing n (e.g., increasing the number of different
operating systems on which a replica might run) in isolation, not in conjunction with an overall increase of
the survival probability. Therefore, we assume that the defender does, in fact, have the same probability of
selecting a replica from any of the partitions. Once again we also assume that we have a lower bound, ε in
the survival probability, so that P(D(b, R)) R ∈ ri ≤ (1− ε) for all i and all b. (Note that unless ε is zero or
one, there must be at least two replicas within each partition for this to be possible.)

As before, we assume that attacks cost nothing to replay, so we only consider the effects of a single salvo.
Let ai denote the attacks in this salvo that are potentially effective against replicas from the set ri (e.g., they
work against replicas running under the particular operating system that ri represents.) The probability of
subverting a randomly selected replica is no greater than∑

i

∑
b∈B(ai,ri)

(D(b, R) R ∈ ri)P(R ∈ ri) . (3)
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We have assumed that the defender selects replicas so that P(ri) = 1/n for all i, so (3) is just

1
n

∑
i

∑
b∈B(ai,ri)

(D(b, R) R ∈ ri) ≤ 1
n

∑
i

|B(ai, ri)|(1 − ε) =
(1 − ε)

n

∑
i

|B(ai, ri)|.

Since no attack works on replicas from two different partitions,
∑

i

|B(ai, ri)| ≤ k ,

where � is the total number of attacks in the salvo. Thus, the probability that a replica will be subverted by
a single attack is less than

k(1 − ε)
n

.

Thus, (1) becomes 21−n(1−(�/n)(1−ε))/2, or just 21−(n−�(1−ε))/2. Solving for the number of attacks, as
before, we find that the attacker needs at least

n − 2 + 2 log(δ)
1 − ε

attacks to have confidence δ of subverting all replicas. If this confidence is reasonably large, then the number
of necessary attacks depends linearly on the number of partitions. (If the confidence is small, the bound
becomes negative, and that means that our framework is unable to guarantee that the attacker will need
even a single attack to reach that low level of confidence.)

(Note that increasing the number of such partitions may be much more difficult than increasing the
number of replicas. This is true, for example, if each partition represents a different operating system.)

3.6 The Vapnik-Chervonenkis dimension of an attack set

At this point, we would like to make some generalizations about the quantity |B(s, r)| (recall that this is the
number of different ways the attack salvos in the set s can behave when applied to the replicas in the set r).
This number is, in some sense, a measure of how diverse the attack salvos are with respect to these replicas,
but so far we have only given specific examples where |B(s, r)| could be determined from the assumptions
of the example.

We would like to say something more general about this value, or, more specifically, about its expected
value, since this is what appears in our calculations when we bound the probability of all replicas being
subverted (inequality (1)). Unfortunately, it is somewhat difficult to draw conclusions about E(|B(s, r)|)
outside of a specific context, since it depends on the probability distribution used when randomly selecting
replicas. However, (1) is an inequality, and the sense of the inequality is preserved if we upper-bound
E(|B(s, r)|) by

max
r∈Rn

|B(s, r)|, (4)

where Rn denotes the power set of all sets of n replicas.
Because of the way behavior strings are defined, |B(s, r)| can be as large as 2n, where n is the number

of replicas in the set r. In other words, if there are sufficiently many attack salvos in s, and if they are
sufficiently diverse. Moreover, adding a new replica might simply increase |B(s, r)| to 2n+1, and, in terms of
what we can prove using (1), the defender gains nothing in this case. (In physical terms, this means that the
attacks are so numerous and diverse to begin with that any new replicas are simply subverted along with
the old ones).

However, if the number of behavior strings is less than 2n, adding new replicas may be fruitful. Indeed,
it is easy to see that if |B(s, r)| is less than 2|r|, then any new superset r′ of r will also have |B(s, r′)| < 2|r

′|;
this is because adding a new replica can no more than double the number of behavior strings. In fact, it can
be shown (C.f., [26]), that if (4) is less than 2|r|, then maxr′∈Rn+i |B(s, r′)| is less than

e(r+i)H(r/(r+i))
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for all i ≥ r, where H is the binary entropy function; H(x) =def −x log(x)− (1−x) log(1−x). This function
grows rapidly as i increases, but 2−(r+i)η/2 decreases more rapidly, leading to a decrease in (1). It follows
that adding new replicas is ineffective up to a certain point only, and this is the point where maxr∈Rn |B(s, r)|
first drops below 2|r|. After that, adding new replicas may decrease the attacker’s chances of subverting the
entire system, and after doubling this number, the attacker’s chances begin to decrease exponentially.

The crucial threshold, where the maximum number of behavior strings is no longer 2 raised to the number
of replicas, is the Vapnik-Chervonkis dimension of the attack salvo, and we will denote it with Vs. We have
taken this concept from the theory of statistical machine learning, and using results from that area we can
show that the probability of subverting all replicas is less than

(
en

Vs

)Vs

2−nη/2 (5)

if n > 2Vs.

3.7 Conclusion

In this paper, we have developed a framework for examining the benefits of redundancy in software systems
that are under malicious attack. Such systems must generally be diverse, in the sense that the redundant
copies do not succumb to the same attacks. Therefore there is some expense associated with redundancy; one
cannot achieve the necessary diversity by simply making copies of an existing program. The central question
is whether or not redundancy slows down malicious attacks enough to make it worthwhile. The goal of
the framework developed in this paper is to show how various factors determine the return on investment
achieved through redundancy.

To avoid having to make a priori assumptions about the attacker’s strategy, our framework deals with
randomized diversification strategies, which is to say that the process for creating redundant replicas has
random elements. This leads to a natural measure of diversity with respect to a given attack or set of attacks:
we measure diversity as the probability of creating a replica that is immune to the attacks in question. This
is appealing because such a probability is also a natural way to describe the quality of the diversification
process itself, so an immediate, quantitative link is formed between the quality of the diversification process
and its effectiveness in retarding malicious attacks.

We have attempted to create a framework that is as flexible as possible, and it was used in a number of
examples to examine how various factors determine the effectiveness of a diversification scheme. Although
there are situations where diversification does not appear to work well, we have outlined some circumstances
where it does work; these include at least some cases where there is an effective intrusion response system
(which may consist of patching vulnerabilities between attacks), the case where the defender never creates
two replicas that are vulnerable to any of the same attacks (hyperdiversity), and the case where the attacker
only replays existing attacks.

Although we are able to say, to some extent, what characteristics should be sought in a redundant system,
we have not said anything about how those characteristics might be obtained. In particular, it is not clear
how to create redundant replicas that have high diversity, nor in fact whether it is even possible to do so
without knowing what the attacker will do. Therefore, it does not seem that our framework can be used
to predict how long a particular redundant system will withstand a particular series of malicious attacks.
It can, however, be used to say what factors affect the performance of a redundant system, and how the
performance might be improved when other circumstances remain the same.

4 Details of the Mutation System and Experimental Results

Aside from the analytic investigation discussed in Section 3, our project also involved an empirical investi-
gation of diversity. In particular, we proposed an application of software mutation, a software engineering
paradigm where programs are altered to simulate faults. Normally, this technique is used to determine
whether software tests can uncover the simulated faults, but in this project, our purpose was to automati-
cally create diverse replicas of software systems.
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However, software mutation is a much broader paradigm than the simple creation of faults or diversity.
Indeed, any software modification might be called “mutation,” although we reserve the term for modifications
that can be applied to many programs, not just one. Following the conventions of the software mutation
literature (see [1, 5, 10] for example), we will say that a mutation system defines a set of mutation operators
which map the set of possible programs to itself. Mutation operators could, in principle, facilitate many
tasks involving software modification:

• Generalized software patches: In computer security, there is currently a need to retrofit programs
with simple, well understood mechanisms that enforce simple security paradigms. A simple example
is protection against buffer overflows. Although many different programs could be patched using just
one basic principle, such as “place sentinel data on the stack to check for buffer overwrites,” “avoid
copying data without checking the length of the data,” or “avoid using stack-allocated variables,”
existing software patch programs are text-based and thus tied to specific programs. However, if such
general principles were regarded as mutation operators, and if they could, in fact, be performed by an
automatic mutation system, the process of patching flawed programs could be greatly simplified.

• Software modification for execution monitoring: In many applications it is useful to monitor the
execution of a program. Other types of execution monitoring have been used in the past to determine
whether a process has been corrupted and also for intrusion detection [11, 12]. The insertion of data
watchpoints into the source code of a program can also be viewed as a mutation operator.

• Software modification for fault injection: Fault injection is the deliberate introduction of errors into a
computation at runtime. It has been used extensively for software analysis, including checks of safety
and security properties [27, 28]. These techniques generally require instrumentation of a program’s
source code at the points where errors are injected. Although this instrumentation is usually done
with a specialized system, it could also be performed by mutation operators if it were considered too
expensive to build or buy such a specialized system.

Of course, regarding such software modifications as mutation operators has little significance unless we
have a mutation system that actually implements them. To our knowledge, no existing mutation system is
so general, and one of our goals was therefore to construct a general-purpose mutation system capable of
implementing arbitrary mutation operators. In this section, we give the details of our system and report on
our experiences when using it.

4.1 Mutation using Mutation Scripts

Our mutation system is driven by scripts that describe how each program is to be mutated. Conceptually,
a mutation script must specify two kinds of things: what parts of the mutated program are to be modified,
and how they should be modified.

Our mutation scripting language accomplishes this by using mutation templates, which specify what
portion of a parse-tree is to be mutated by referring to the productions in the program’s grammar. Each
template is associated with code that modifies the parse tree, referring to the productions mentioned in the
template. It is also convenient to have a body of code that is executed as soon as the mutation script is
executed, in order to define functions and initialize global variables.

The details of our mutation scripting language will be given in what follows. First we will describe the
language itself and its interface with the parse tree, and then we will describe the mutation templates we
use to specify where mutations will take place.

4.1.1 The mutation language

Our mutation language is a functional language, similar to LISP. This decision was made for two reasons:
First, the interpreter is easy to implement, and second, the dynamic scoping of functional languages seems
well suited for our method of mutation using mutation templates and mutation scripts, since it simplifies the
passing of parameters to parts of the script that are bound to mutation templates (this will be illustrated
by an example later).

14



Figure 1: The template #< ($type) ($identifier lisr) ># matches two different combinations of nodes. In

practice, we find that the author of the mutation script probably only had one of them in mind.

The Mutation System script language, mscript, is used to specify the actions undertaken by the system.
The language provides standard programming capabilities via a functional programming language similar
in syntax to LISP, after which it was originally modeled. In addition to typical programming capabilities,
mscript allows a user to specify a template which represents a tree data structure. The Mutation System
uses the templates to find instances of the template sub-tree in the Input Tree provided to the system. If a
template ”match” is found, a rule specified in mscript syntax is executed. This rule may potentially modify
the tree, changing its structure, or simply perform some type of analysis. A typical use of the language is
to specify modifications to be made to a parse tree representing source code of a high-level language such
as Java or C++. For example, templates which potentially match portions of the AST are defined and are
”associated” with rules which generate a subtree to replace the ”matched” subtrees.

A template takes the form of a regular expression whose alphabet symbols represent the terminals and
nonterminals in the parse tree. Thus, for example, the template
#< typename ($identifier ",")* $identifier "," ($identifier ",")* $identifier ";">#
matches all but the the last identifier in an idealized C/C++ declaration that consists of a typename, followed
by a comma-separated list of identifiers and a semicolon. The final identifier would need to be matched by
a separate template.

Each template is associated with code describing how the source code matching the template is to be
mutated. Since this code may reference variables in a higher scope, it is necessary to define the order in which
matches are processed. In the current system, this is accomplished by a process that, intuitively speaking,
only processes the first match found during a preorder traversal of the parse tree. (The actual procedure is
somewhat more complicated and will be described below.) The program can use one of several mechanisms
to prevent the same parse-subtree from being matched twice; most commonly, the nodes of the matched
subtree are simply renamed during mutation. Thus, all matches in a parse tree can be found by iteratively
calling the matching algorithm until no more matches are found.

The above explanation is “intuitive” because it is ambiguous. For example, in the parse tree
shown in Figure 1, the template #< ($type) ($identifier list) ># could match at two different node-
combinations, going only by the description given above. (This can happen even when the underlying
grammar is not ambiguous itself.)

The problem is that regular expression syntax, which we adopted because it seemed like it would be
readily understandable to users of the mutation system, is not meant to be applied to trees, and so we are
abusing that syntax here. We resolved this problem by establishing three conventions, which are meant to
make the system do what the user expects. When using the system, we found that it did, indeed, behave
in an intuitive way, which is to say that we did not find ourselves explicitly thinking about the additional
matching conventions when we wrote mutation templates.

We now describe our additional matching conventions:

1. In regular expressions, the ’*’ operator implies a sequence of symbols, so we do not want it to match
a node while also matching the children of that node. In other words, the template above should not
match node sequence 〈2, 4, 5〉 since this is counterintuitive and would lead to confusing programs.

2. Matches occur according to a postorder left-to-right traversal, which is to say that the first identifier
matched by the template #< ($identifier)* ># will be the first one encountered in a left-to-right
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postorder traversal, the second identifier will be the second one encountered in the same traversal
(excluding ancestors of the first match, as required by the first convention) and so on.

3. These conventions eliminate ambiguities caused by matching a parse tree instead of a string, but
some ambiguity still remains because our regular expressions can correspond to nondeterministic finite
automata. This ambiguity is resolved by the convention that the longest possible string of symbols is
always matched, subject to the first two conventions.

Mutation templates are associated with code that mutates the portions of the parse tree that are matched.
To facilitate this, an alphabet symbol S can be replaced by the construct (<varname> = $S) (recall that the
alphabet symbols are the names of terminals or nonterminals in the grammar). Here, <varname> represents
a variable name that will be bound to whatever parse-tree node matches S, and then made available to the
mutation code.

A final feature of templates is that they allow explicit matching of parse subtrees having a certain
structure. An alphabet symbol S in a template expression can be replaced by the construct S(<template>),
which only matches a subtree if its root is of type S and the rest of the tree can be matched to the mutation
template <template>. This construct overrides the convention that one symbol in a mutation template not
match a node in the parse tree at the same time that another symbol matches an ancestor of that node. For
example, the template

@PrimaryExpressionNode((.)* (id = $IdentifierNode) (.)*)

matches any node labeled as a PrimaryExpressionNode, provided that it is the root of a subtree containing
at least one IdentifierNode.

4.1.2 The lexical structure of mscript

The lexical structure of mscript is based on the ASCII character set. An arbitrary amount of white space
separates lexical elements. A string is a combination of alphanumeric characters. A constant is an integer,
or a floating point number, or a sequence of characters other than an end of line enclosed in quotes, for
example ”some string”.

The following characters have special meaning in the mscript language:

• A ’;’ denotes the beginning of a comment line. Comments may begin anywhere in a line. A comment
is completed by an end-of-line or end-of-file character.

• Parentheses, ’(’ and ’),’ delimit an element of type list in mscript.

• The empty list, ’()’ denotes the element nil which can also be represented as ’nil’ in mscript.

• The symbols ‘#<’ and ’>#’ enclose an element of type template (used to specificy which parts of a parse
tree are to be operated on).

• Function calls are represented as ’name.arg,’ where ’name’ is the name of the function, and ’arg’ is the
argument, which may be a list. Thus, ’.’ is a special character.

• Brackets, [ and ], delimit a lambda expression.

• An apostrophe, ’’’, immediately preceding an object suppresses evaluation of the object, effectively
making the object a constant. Thus, ’’var_name’ refers to the variable itself, rather than referencing
the value of the variable.

4.1.3 The syntactic structure of the mscript language

Our mutation system is driven by scripts that describe how each program is to be mutated. Conceptually,
a mutation script must specify two kinds of things: what parts of the mutated program are to be modified,
and how they should be modified.
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Thus, our mutation scripts have two main types of components: mutation templates that specify what
syntactic constructs will be modified by a given mutation operator, and mutation code that does the actual
modification, referring to the syntactic elements identified by the template. For example, a simple mutation
operator might be specified as follows:

#<type_specifier identifier* ($id = identifier) >#

(mutation code)

The template matches any type specifier followed by one or more identifiers, and associates the variable
id with the rightmost identifier. The rightmost identifier can be accessed by the mutation code via the
variable id.

The mutation system works by modifying parse trees, and hence the terms in the mutation templates,
such as “identifier” and “type specifier” in the example above, refer to nonterminals in the parse tree.

The matching templates are based on regular expression syntax, which makes the templates easier to
write and understand than, say, a context-free grammar. However, regular expression syntax is not suited
for matching portions of a tree, so we use an augmentation wherein a node may be specified by its structure,
as well as by its identifier. Specifically, an identifier in a template can be replaced by a nested regular
expression, which must be satisfied by the parse subtree rooted at the node in question. Obviously, this nested
regular expression can contain more nested regular expressions. Nested regular expressions are enclosed by
“@..(...)” in the following example:

#< (assg = @AssignmentNode(
(lhs = @PrimaryExpressionNode(id = $IdentifierNode))
{"="}
[$BinaryExpressionNode
$PrimaryExpressionNode
$NonLogicalExpressionNode
])

)
>#

This template matches any parse tree node whose identifier is AssignmentNode, as long as the subtree rooted
at this node matches the regular expression

#<PrimaryExpressionNode
{"="}
[$BinaryExpressionNode
$PrimaryExpressionNode
$NonLogicalExpressionNode]

>#,

and as long as the tree rooted at the PrimaryExpressionNode in this expression matches the regular expres-
sion #< $IdentifierNode >#. Here, the square brackets imply disjunction. Note that the AssignmentNode
at the top level is associated with the variable assg, the PrimaryExpressionNode is associated with the
variable lhs, and the IdentifierNode is associated with id.

The mutation code associated with such templates is written in a simple LISP-like language. This allows
an initially simple interpreter to be extended as necessary. We found, not surprisingly, that programmers
had difficulties with a pared-down functional language such as this. At the same time, we did not discover
any specialized requirements for this language that justify a custom interpreter, although support for nested
function definitions turned out to be useful in practice. Still, the mutation language in our prototype was
not a complete success, so in this paper we will not describe it in detail. We simply note that the mutation
language accesses the parse tree via variables defined in the mutation template, and has access to several
basic functions for modifying the parse tree. These functions create new parse-subtrees, delete parse-subtrees
from the parse-tree, and insert new subtrees. These functions also allow changes to the identifiers associated
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with parse-subtrees, and, among other things, this mechanism can be used to stop a template from matching
the subtree twice. Thus, nearly any programming language can be used as the basis for generalized mutation
operators.

The syntax of the mutation language, which we named mscript, is essentially the same as the syntax of
LISP, with several exceptions.
Function call syntax: In LISP, a function call has the form (function-name arg1 arg2 ... argn). The
corresponding call in mscript is

function_name.(arg1 arg2 ... argn)
Having this different function call syntax leads to several other differences as well. For example, it is possible
to say

Set.(’arglist ’(arg1 arg2 ... argn))
Function.arglist

and get the same effect as calling the Function on the original argument list. It is also possible to use a single
variable as an argument to a function, as in

Function.var
even if that variable is not a list.
Variable assignment: In mscript, the function Set defines a variable in the current scope, and gives it a
value. Currently, things don’t work well if there are two or more Sets of the same variable in the same scope.
This is a bug, but Set should be thought of as a declaration with initialization, and not an assignment. For
example

Set.(’x 12)
declares a variable named x and initializes it with the value 12.

Assignment is done with the function Reset, which searches for the innermost declaration of a new
variable, and gives it a new value. For example,

Reset.(’x 34)
assigns the value 34 to the variable x, assuming that x was declared in some enclosing scope with a Set.
Built in functions: Many built-in function that are so common that they’re essentially a part of LISP aren’t
currently part of mscript. In particular there is not currently a defun function. Instead, functions are defined
by assigning a variable to a lambda expression, as in

Set.(’fcn ’<lambda_expr> )
which defines a function named fcn whose body is the lambda expression.

Lambda expressions The lambda function is the function that is used to do function calls. Lambda’s
arguments are a function and a parameter list, and its purpose is to call the function using the parameter
list. For example, in lisp one might say

(lambda Add (2 3)),
which would cause the function Add to be executed with the arguments 2 and 3. In mscript, the corresponding
call would be

Lambda.(Add (1 2)).
In both mscript and lisp, the function is a list whose first element is the parameter list, and whose second
argument is the function body. For example, the list

((a) Add.(a 1)) <mscript>
((a) (add a 1)) <lisp>

can be interpreted as a function (through the use of lambda) that takes a single parameter, a, and adds one
to it. Therefore,

Lambda.(’((a) Add.(a 1)) (2)) <mscript>
((lambda’((a) (add a 1))) 2) <lisp>

has the effect of adding 1 to 2 and returning 3. First, the 2 at the end of the list is bound to the variable a,
and then the function call Add.(a 1) is executed.

When a list is evaluated in LISP, it is automatically assumed that the first element is a function. If a LISP
interpreter is asked to evaluate (add 2 3) it assumes that add is a function. The interpreter calls lambda
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automatically to evaluate the function (at least this is how it works conceptually). Therefore, since the list
((a) (add a 1)) can be interpreted as a function, its should be possible to say

( ’((a) (add a 1)) 2)
in LISP; this should execute the function defined by ((a) (add a 1)) in the parameter 2. (However, many
LISP interpreters do not implement lambda so literally.)

In mscript, one can say
’((a) Add.(a 1)).2,

which has the effect of executing the function defined by ((a) Add.(a 1)) with 2 as the parameter. With
LISP, the fact that a list is being evaluated implies in itself that the first element of the list is a function, and
it triggers a call to lambda. In mscript, the appearance of a period between to elements implies that the
item on the left side of the period is a function call, and it triggers a call to lambda as well. Therefore, it is
not necessary to call lambda explicitly in either language (but lambda does exist in mscript).

In LISP, the function defun is used to define a function.

Parameter lists

Ordinary parameter lists: Mscript is technically based on a tree structure, not on a list structure like
LISP is. Normally this makes no difference, because a mscript tree is more or less the same as a list of lists
as far as the user is concerned. But it affects the way argument lists are parsed. In mscript, a parameter
list can contain lists itself. In contrast, a lisp parameter list can only contain variables. For example, the
following are legal lambda expressions in mscript:

(a Sum.(a 1))
((a) Sum.(a 1))
((a (b)) Sum.(a b))

Assume that these one of these functions is called Add (as it would be if we said Set.(’Add ’(a Sum.(a
1))), for example). The first expression should return 2 when called as Add.1, but if it were called as
Add.(2), it would cause an error by trying add one to a list. If Add were defined to be the second expression
above (e.g., Set.(’Add ’((a) Sum.(a 1))),) the the call Add.1 would result in an error, because Add
expects its argument to be a list and not a number. Likewise, if Add were defined with Set.(’Add ’((a (b))
Sum.(a b))), then Add.(1 2) would result in an error, because Add would expect a list consisting of a
number followed by a list. (The correct call would be Add.(1 (2)) in that case.)
Templates as parameter lists To (somewhat) extend the notion that parameter lists are trees that have
to match the argument list, a mutation template can also be used as a parameter list. Such a parameter list
has the form

#< template >#
where the template has the same form as other mutation templates. If a template appears in the parameter
list of a function, then the corresponding argument is expected to be a parse subtree. The function body is
executed once for each time the template is matched within the parse tree. The result is a list containing
the result of each function evaluation. For example, consider the function tname defined as follows:

Set.(’tname
’(#< [tree] $1typedefname ># ($1typedefname)))

The function would be called with a single argument, which would be a parse subtree. The function body,
which is ($1typedefname), is evaluated once each time a typedefname is found in the argument. The
function body does not do any computation, but it returns the parse subtree that was matched as being
a typedefname. Since all the values obtained from evaluating the function body are placed in a list and
returned, the effect of tname is to return a list of all the typedefnames that are found in the subtree that is
used as its argument.

(In the current language, one difference between a real mutation template and a function with a template
parameter is that the real mutation template can be used to modify code, while a function with a template
has no easy way to modify the code. On the other hand, a function with a template parameter synopsizes
its results in a form that can be manipulated by other functions, and a regular mutation template cannot
do this.)
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Builtin Functions The currently implemented mutation functions are:

• Eval(x): The argument x is a tree describing a mutant rule. Eval(x) evaluates this tree and returns
the result. This function is described above.

• Replace(n, x, y): The first argument is a number, the second and third are trees. The result is a
tree formed by taking each child of the first tree and using it to replace the nth child of the each child
of the second tree. (It is useful to think of the second and third arguments as lists rather than trees,
the members of the list correspond to the children of the tree. Then the third argument is a list of
lists. Each member of the list x is used as a replacement for the nth member of each list in y.)

• Cond.((c1 a1) (c2 a2) ... (cn an)): If c1 evaluates to something other than nil, return the
result of evaluating a1. Otherwise, if c2 evaluates to something other than nil, return the result of
evaluating a2, and so on. If none of c1, c2, ..., cn evaluate to anything besides nil, return nil.

• Lambda.(func, args): Similar to lambda in LISP. It is not often called directly, but knowing how it
works is useful for understanding function calls. func is a list of of the form params action params
action ... params action. args is a list of arguments. For each params-action pair, and for
each argument in the list args, Lambda opens a scope, binds the argument to the parameter params,
as described below, and evaluates action, and closes the scope. The handling of return values is
currently somewhat bizarre because we have not decided what makes the most sense as the return
value of a lambda expression from the standpoint of language usability. The return value is defined as
follows: If any evaluation results in an atom, then the return value is the value of the last evaluation
that resulted in an atom. If no evaluation results in an atom (that is, every evaluation results in a
list) then all the lists are catenated and the result is returned.

If we were simulating the traditional LISP form of lambda, funcwould consist of a single param-action
pair and args would contain a single list. params would be a list with the same number of elements
as the list contained in args. The first member of the param list would be bound to the first member
of the argument list, the second member of the param list would be bound to the second member of
the argument list, and so on, and then the action would be evaluated.

Our version of Lambda does this repeatedly, once for each param/action pair and each argument.
However, if a parameter cannot be bound to an argument (for example, if they’re lists with different
numbers of elements), Lambda does not return an error; instead it simply skips the evaluation of that
particular action for that particular argument.

This behavior, together with the method we use to bind parameters to arguments, makes the function
call mechanism extremely powerful and fun to use, though somewhat tricky.

An argument and the corresponding parameter are both single items, as implied by the use of the singular
case being used to describe them. The parameter can be an atom, a list, a tree, etc, but the structure of the
argument must match the structure of the parameter enough to allow a variable binding.

If the parameter is mylist and the argument is (hello world), then mylist will be bound to the list
(hello world). If the parameter is the list (x y) an the argument is the list (hello world), then x is
bound to hello and y is bound to world. If the parameter is the list (x (y)), and the argument is the list
(hello world), then the match fails because we expected the second element of the argument list to be a
list itself, and instead it was the atom world.

The association of parameters to arguments is accomplished by simply placing the string that is given as
a parameter into a symbol table, and making the argument into its value. This is done in a local scope, so
the association disappears after the function call.

To make things interesting, a special feature exists that allows a parameter to be a mutation template.
In this case the expected argument is a parse subtree. If the template matches the subtree, then replacement
references are resolved (see above) before the action is evaluated, so the replacement references act like
symbols in the symbol table at the local scope. Their values are the corresponding parse subtrees. If the
parse tree matches the template in more than one place, the action is evaluated once for each match.

An example:
Set.(’collect_conditions
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’((\#< [tree] when_clause
when $1cond => $1select_wait_alt >\#) ($1cond)))

defines a list that can be used as part of the func list in a Lamdba expression. The section #< [tree]
@when ... ># is a template (see above) that is matched when we traverse a parse tree and we hit a node
of type when clause whose children are a node of type cond (in this case a specific condition in the code
being analyzed). When a match occurs, the variable $1cond is bound to the parse subtree that represents
the condition in question.

For each match that occurs, Lambda evaluates ($1cond) and places the results on a list. The result is a
list of all the conditions that appear in when clauses of the parse subtree that was passed as as an argument.

• Head.x: Head is analogous to car in LISP. If x is the list (hello world), then Head.x evaluates
to hello. Likewise, Head.(hello world) evaluates to hello. But Head.(x) evaluates to (hello
world), because it returns the first member of the list (x), which is x, and evaluates to (hello
world).

• Tail.x: Tail is analogous to cdr in LISP. It returns the list that results from removing the first element
of x. If x is the list hello world then Tail.x evaluates to (world). If x is (hello) then Tail.x
evaluates to nil. If x is goodbye cruel world the Tail.x evaluates to (cruel world).

• Or.(c1, c2, ..., cn) Return t if any of c1, c2, ..., cn are non-nil. Or does short-circuit eval-
uation.

• And.(c1, c2, ..., cn) Return t if all of c1, c2, ..., cn are non-nil. And does short-circuit
evaluation.

• Not.(c): Return t if c evaluates to nil; return nil if c does not evaluate to nil.

• Minus.x: makes x negative. Anything can be negative but at the moment this does not mean anything
semantically unless the negative thing is a number.

• Sum.(x1 x2 ... xn): The arguments x1, x2, ..., xn are assumed to be numbers. Sum adds them.
Subtraction is accomplished with Minus, that is, Sum.(x Minus.y) subtracts y from x. Sum.(Minus.y
x) has the same affect (because addition is commutative. Note that Minus is not an infix operator).

• Num Equal.(x1 x2 ... xn): test for numeric equality. Returns t if x1, x2, ..., xn are all the
same number, otherwise returns nil.

• Set.(a b): Associates the name a with b in the symbol table at the current scope. For example,
saying Set.(’hello ’world) means that hello will evaluate to ’world until the scope is closed.
Note that the antecedent of a mutant rule has its own scope. Therefore, a Set in the antecedent of
a mutant rule will not have any affect after that antecedent is finished being evaluated. Set is not so
much an assignment statement as it is a declaration with an initialization.

• Reset.(a b): Searches the scope stack for the first occurrence of a. The old value of a is removed
from the symbol table, and b becomes the new value of a at the level of scoping where a was found.
Therefore, using Reset is like making an assignment to a variable that has been declared using set.
(As expected, Reset.(a b) results in an error if a is not in the symbol table, that is, if it has not been
declared by a Set in an ancestor scope.)

• OpenScope: Open a symbol table scope. This allows static scopes to be created without kludging.

• CloseScope: Close a symbol table scope. This allows static scopes to be created without kludging.

• Defined.(x): Look up the value of a symbol. If the symbol exists, return its value. If it does not
exist, return nil.

• Reverse.x: Reverses the elements of the list x.
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• String.x: Returns a string consisting of the terminals encountered during a preorder traversal of the
argument.

• Consume.x: Always returns nil. The reason for having this is that currently, mutation is done by
evaluating the right side of the mutation rule and printing the list that results. If we have to do some
computation that should not appear in a mutant, we put that computation inside a Consume.

• Message .(x): Print out whatever is in the variable x. Unfortunately, Message is a bit fragile because
of the strong assumptions it makes about the format of the argument. For example, Message.((x))
currently causes a core dump regardless of what x is, because Message does not expect a list containing
a list. The recommended way to call Message is

Message.(String.<arg>)

• Emit.x: Prints its argument to the file containing the instrumented code. Emit is more robust than
Message because it accepts tree-structured arguments and also knows about variables of the parse-tree
type (because of some implementation weirdness, parse subtrees are their own type of object even
though objects in the mutation language are trees too.) The problem with Emit is that it will not
work until the output file has been opened, meaning that it only works after mutation has started. In
other words, Emit can only appear in a mutation template.

• PrintArg.x: Prints its argument to stdout. PrintArg is more robust than Message, but it is meant
mostly as a debugging function. When it encounters a parse subtree, it prints the contents inside
square brackets.

4.2 Practical Drawbacks of Metasoftware Engineering

In our system, generalized mutation operators must be programmed; the operators are described by mutation
scripts instead of being hardwired into the mutation program. If it were otherwise, the result would not be
a general-purpose system. The programming of mutation scripts therefore becomes a software engineering
task, and we have found that the scripts can easily be complex enough to justify this analogy. Unfortunately,
the development of mutation operators involves a number of issues not encountered in traditional software
engineering tasks, and we will discuss those problems here.

As an example, consider the problem of modifying a program so that all local variables are allocated from
memory, instead of being allocated from the stack. Such a modification would prevent most buffer-overflow
attacks from succeeding.

The most obvious element of such a mutation operator is to change the way local variables are declared;
for example, the C declaration int c should become int *c = (int *)malloc(sizeof(int)). For such an
operator to be viable, however, it must also free the locally allocated variables when they go out of scope,
since otherwise the mutated programs might not be usable replacements for the original ones.

Programmers often believe, initially, that such mutations can be made with programs like sed that
scan and replace text but do not parse the program. This leads to an explosion of special cases, as when
it becomes necessary to ensure that int c is not replaced with int *c = (int *)malloc(sizeof(int))
when the statement is part of an aggregate type declaration instead of being a local variable declaration.

In fact, similar problems occur in subtler ways even for simple mutation operators, such as the replace-
ment of one arithmetic operator with another in the mutated program. In C, for example, the set of legal
replacements for an operator depends on the data-type being operated on, since pointers may not subjected
to multiplication or division. Thus, the mutation system must not only find operators to replace, but know
the data-types of variables, which leads to immediate problems for text-based systems.

It was such problems that motivated our use of mutation technology based on parse trees. We began
the current project with a rudimentary parse-tree based system capable of performing the simple mutations
generally associated with software mutation analysis, such as operator replacement and variable replacement.
For such mutations, the parse-tree based approach seems to successfully overcome the problems associated
with text-based replacement.
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Unfortunately, the parse-tree based system also runs into problems when there is a need to program more
complex mutation operators. Like text-based approaches, it is based on the syntax of a program rather than
the semantics. Or, to be more precise, it provides some semantic information — more than a text-based
approach — but that information has limited utility in the programming of complex mutation operators.

Consider again the example above, where the goal was to prevent local variables from being allocated on
the stack. The first problem faced by the mutation programmer is identifying local variable declarations in
the parse tree, so that they can be modified. This task is easier than it would be with a text-based system,
because the grammar contains a well-defined set of productions for parsing variable declarations, and those
productions are reflected in the parse tree. However, the programmer must discover which parse-tree patterns
can denote a local variable declaration in order to use the matching techniques described in Section 4.1.1 (or
any other parse-tree based modification technique). To make matters worse, there are many special cases,
because different declarations need to be modified in different ways. For example, d in the declaration int
c, d; needs a different modification than the c, because the data-type, which is needed to perform the
mutation, is elsewhere in the parse tree with respect to the variable.

This particular problem, and many others, can be overcome by clever design decisions, but those decisions
are intimately tied to the structure of the parse tree. In contrast, most software development projects that have
abstract, high level designs do not depend on such excruciatingly small details as those found in a parse tree.

At this point, we can only say for certain that the development of mutation operators is different from
standard software engineering, at least with our system. Since no one is experienced in this particular type of
software engineering, we can expect the process to have rough spots that would not exist in a more traditional
setting. However, we suspect that syntactic approaches — both text based and parse-tree based systems —
may inherently leave something to be desired. It is often natural to describe mutation operators by saying
how the semantics of the program should be changed, but that forces the mutation programmer to find all
combinations of syntactic constructs that could lead to the behavior in question. In contrast, a software
developer on a standard project only has to find one combination of syntactic constructs that leads to the
behavior in the specification. The resulting problems may make syntax-based mutation scripting inherently
impractical for mutation operators meant to bring about particular changes in a program’s behavior.

5 Creating diverse systems with abstract interpretation

The goal of diversification, as we have stated it, is to have a number of components or servers performing
the same function, so that the defender is not deprived of that function if some components are maliciously
attacked. The backup components have to perform the same function as the original, so they should have the
same specification, but components of the type in question often lack formal specifications, so we must make
the replicas based on the source code of the original program, doing our best to to preserve the important
aspects of the original semantics.

The desired situation is described in Figure 2. S is the set of possible program semantics, and the mutation
operator M maps this set back to itself. The semantics of the mutant are not strictly the same, but they
preserve the behavioral features that are needed to perform the intended functions of the component.

If we compare this diagram to what is actually implemented by the system described in Section 4, we can
refine it further. This is shown in Figure 3. Each mutation operator picks out some aspect of the semantics
using mutation templates (the mapping M1 in the figure), transforms it (the mapping M2), and finally
installs it in an operational program (the mapping M3). Mappings like M1, and also M2 if it preserves the
original semantics, are one of the main concerns of abstract interpretation (see [9]), a field closely related to
symbolic execution (C.f., [6,8]) and partial evaluation (C.f., [14]). In general, abstract interpretation simply
consists of abstracting some aspect of software semantics an interpreting it.

How the abstraction is done, and how the resulting semantic information is used, depends on the ap-
plication. For example, a system proposed by [20] tries to find upper and lower bounds on the ranges that
variables might have when a program executes; this system and others like it are often called symbolic ex-
ecution systems but symbolic execution is, in turn, a form of abstract interpretation. Symbolic execution
has also been used to find algebraic representations of program semantics, again with the object of test
data generation [7, 22]. Here, the idea is that if the program can be reduced to a symbolic form that can
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Figure 2: Illustration of a mutant operator as a map-

ping from the set of possible program behaviors to

itself.

Figure 3: The mutation process resolved into three

stages: the mapping of (part of) the source code

to an abstract representation (M1), the modification

of the semantics thus represented (M2), and the re-

installation of that semantic behavior into an exe-

cutable program (M3).

be algebraically manipulated, one can find tests that satisfy certain predicates; one simply says what those
predicates are, plugs them into the symbolic representation of a program, and solves for the input variables.
In cite [18], a similar paradigm is discussed, but there, faults are introduced into the abstract representation
of the program’s semantics, and one tries to find input values that trigger these faults. Once again, this is
to be accomplished by essentially solving for the input variables. In addition, symbolic execution is used in
many mutation systems to try to ensure that the mutants, which are supposed to have new semantics, do
not in truth have the same semantics as the original program; C.f., [3]; here, the abstract semantics of the
mutated program are just compared to those of the original program. (The description of our own system,
given below, will serve as a more concrete example of the ideas involved.)

The emphasis in abstract interpretation is preserving some aspect of a program’s semantics, and in
this sense it contrasts with mutation, where the emphasis is on changing behavior. This, and the fact that
abstract interpretation is a richer science than software mutation, suggests that abstract interpretation might
form a better basis for software diversification.

In principle, abstract interpretation has little to say about how semantics are manipulated; this issue
is left to specific abstract interpretation techniques. In practice, however, systems that perform abstract
interpretation have a very different flavor from mutation systems. The emphasis is on abstract representations
of program semantics that support formal reasoning and algebraic manipulation.

Our goal in this section is not to mimic mutation using an abstract interpretation system, but rather to
step back and examine the application of abstract interpretation to the problem of software diversification.
Referring to Figure 3, we can cite a number of advantages with such an approach.

1. If the semantic representations in S1 or S2 can be interpreted, then they, in themselves, can form the
core of a diverse system. The interpreter itself copies the behavior of the original program when it is
executed on the abstract representation. If the program deviates from its intended behavior, but the
interpreter is unaffected, we can not only detect but correct the deviation in the original code.

2. The mapping M2, which is where the actual mutation takes place, is based on semantics, not syntax.
Based on the experience reported in Section 4.2, this can be a significant improvement on, or at least
a useful augmentation to, syntactic mutation techniques.

3. We can also use M2 to choose what aspects of the semantics we concentrate on, because the seman-
tic representation representations generally used in abstract interpretation support such abstractions
easily. For example, if we are interested in buffer overflow attacks, we might abstract the semantics
pertaining to the contents or location of character buffers. We can use M1 for this as well, and, in fact,
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the system described in Section 4 does exactly that when it searched for subtrees matching a certain
template. But once again, the approach of Section 4 is syntax-based and thus leaves something to be
desired.

4. As a side effect, the ability to get abstract representations of software behavior might help us when we
search for vulnerabilities or analyze attacks.

Abstract interpretation techniques generally have two important drawbacks. First, the abstract repre-
sentations can be voluminous and thus tax system resources. Second, some semantic information is hard to
translate into the desired abstract form (a notable example being behavior that results from pointer alias-
ing). A more practical issue is that the programs we are interested in here are procedural or object-oriented,
which is a representation quite different from the one we seek. This means that the implementation of a
general-purpose abstract interpretation is time-consuming due to the sheer number of diverse features that
must be implemented.

All of these limitations can be sidestepped in a system that uses abstract interpretation to implement
diversity. Instead of insisting that S1 represent the semantics of whole programs, we can use a number of
different mappings in place of M1 to extract the semantics of small sections of the program. The size of the
abstract behavioral descriptions can be bounded by limiting the size and number of program chunks whose
semantics are represented. Program features that cannot be represented, or ones that require features not
yet implemented in the abstract interpretation system, can simply be left out of the process by choosing
program chunks that do not span such features (for example, if loops are not supported, we might treat the
body of the loop, a section of code before the loop, and a section of code after the loop as three distinct
code-chunks.)

At any given time, we can randomly select which parts of the program we represent abstractly. This is in
accordance with the principle of randomization outlined in Section 3. An attack may go unattended because
it does not exploit the semantics being mapped, but since the choice of what to map is made randomly,
there is a certain probability that the attack will affect part of the semantics that are being replicated. If
we take some corrective action, then this probability is just the survival probability discussed in section 3.
In fact, even if we just raise an alarm when the actual and expected program behaviors diverge (as we do in
the system we will shortly describe), we still have a diverse system, though it is now the intrusion detector
that is diverse, and fooling a particular intrusion detector is analogous to subverting it.

5.1 Details of the System for Extracting and Monitoring Behavioral Constraints

In this section, we describe our framework for extracting behavioral information from programs. In our
original proposal, it was meant to help us in finding mutants that preserved the intended semantics of the
original program, but it became the backbone of what we believe is a more viable approach to diversity,
based on monitoring a program’s compliance with semantic constraints. In this section, we will describe our
system for analyzing program behavior, and our use of that system to create diversity in critical systems.

The original aim of our mutation system was to create only equivalent mutants, that is, mutants whose
semantics were (superficially) the same as those of the original program. The motivation for this is that,
in reality, the semantics elements of a program can be divided into intentional semantics and incidental
semantics. The intentional semantics describe the behavior that must be present to fulfil a program’s
specification, and the unintentional semantics describe incidental behavior, such as the writing of temporary
files, the specific choices of data structures, and, in principle, even such details as what memory locations
are allocated and how much the program heats up the CPU.

The motivation for our approach to survivability was that malicious attacks often take advantage of
incidental semantics. Indeed, such attacks are especially troublesome because they exploit vulnerabilities
not apparent in the specification. If an attack relied on nothing but the semantics given in a specification,
then the vulnerability could (at least in principle) be uncovered by a formal methods. Therefore, we intended
to build a mutation system that could preserve the intentional sematics of a program, while altering the
incidental semantics. In the language of mutation analysis, the goal was to create equivalent mutants.

Existing software mutation systems already have mechanism for identifying equivalent mutants, though
this is done to avoid them and not to generate them. Our intent was to reverse the standard approach.
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To identify equivalent mutants, it is necessary to extract semantic information from the program being
mutated. The semantic information extracted by our system takes the form of semantic constriants, which
are essentially Horne clauses asserting that if some set of preconditions is satisfied, then some postcondition
is satisfied. Some preconditions are always true, some depend on the data in a specific execution of the
program, and some are deduced using other Horne clauses.

If a function or program is completely specified in terms of semantic constraints, then we can, at least
in principle, determine the high-level semantic properties of the program by combining the constraints. For
example, if we were interested in the relationship between the input variables and the output variables
of a function, we could simplify that function’s semantic constraints and obtain a (hopefully concise) set
of Horne clauses describing the output variables as algebraic functions of the input functions. We might
also try to obtain a concise description of the possible control paths through the function, though the
resulting constraints would be different from those obtained in the previous case. Such simplification can
be characterized as abstract interpretation, which is defined as the mapping of some aspect of a program’s
behavior into a more abstract, hopefully more tractable domain (see [9] for a concise overview).

Usually, abstract semantic descriptions can be manipulated algebraicly, as our semantic constraints can.
Therefore, we can use them to isolate the semantic preconditions and postconditions of some portion of a
program that is to be mutated. If a potential mutant has weaker preconditions and stronger postconditions,
then it will not change the part of the program’s behavior represented in the constraints.

Several things became apparent as we implemented our system for extracting semantic constraints:

1. Constructing the constraint extraction and abstract interpretation systems was a more time-consuming
task than we had expected. As the project progressed, we began to see long-term value in the devel-
opment of a system that was more expressive than what we had originally planned. This prevented
us from completing our orignally proposed system for identifying equivalent mutants, but for various
reasons (see Sections 3 and 4.2) the mutation approach no longer seemed promising. Within the given
resource constraints, we pursued an approach to diversity that seemed more promising, and which will
be described shortly in Section 6.1.

2. Though it would be possible, at least in principle, to identify equivalent mutants, we could not construct
a system to create them within the constraints of the current contract. Our original plan had been to
automatically extract libraries of potential mutants from existing programs, maintaining the pre- and
postconditions for each mutant in the library as well. Under this plan, mutation would be carried out
by first extracting the pre- and postconditions of a piece of code that was to be mutated, and then
search for an equivalent mutant in the library. However, we found that semantic constraints tended to
be too detailed for this to work; in most cases, we would simply fail to find an equivalent mutant.

3. In principle, a system based on semantic constraints could emulate a diverse system based on software
mutation. If some portion of a program were meant to be mutated, and we possessed the preconditions
for that program fragment, we could monitor the program during execution and determine (a) when the
mutated fragment was to be executed, and (b) the starting values of the variables used in the program
fragment. In principle, therefore, we would have enough information to execute a mutated program
fragment, and, with the postconditions in hand, we could compare the resulting data-state to that of
the original program. If desired, we could even inject the data-state created by the mutant into the
original program. Thus, by using constraints to trigger the execution of mutated code fragments, we
could emulate the effects of a diverse, redundant system without actually running different programs
in parallel.

4. If the information contained in semantic constraints were used to directly calculate the results of exe-
cuting the corresponding code, this calculation would, in itself, constitute an equivalent mutant.

These considerations led us to a new blueprint for a diversification system based on constraint monitoring.
The details will be given below, but the overall idea is to monitor the program’s compliance with the semantic
constraints that have been extracted from it. For the reasons given above, this is the same as having one
equivalent mutant for each constraint being monitored. There are two important differences between this
system and the one we had originally proposed:
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1. Diversity is not created by having many mutants for a one or more large portions of the code. Instead,
it is created by using a single mutant for each one of many small fragments of the code. This seems to
us to be a more effective way to increase the survival probability discussed in Section 3.

2. The resulting system is self-contained; no external harness is needed to make redundant mutants run
in parallel and compare their results. Such a harness was not included in our original proposal, so the
advantage of this approach is a reduced need for external technology. The disadvantage, as we will see,
is a potentially lowered resistance to some denial-of-service attacks.

Before delving into the details of our approach, a final issue that must be discussed is the feasibility of
extracting and using semantic constraints. There are two hurdles: first, the number of semantic constraints
extracted from a single program can be quite large, and second, it is not possible to obtain a complete but
analytically tractable description of a program’s behavior.

To see the problem posed by having many program constraints, the reader may imagine two programs
running in parallel. One program is the real one, and the other is a sentinal program that checks the behavior
of the first. At every execution step, the sentinal program reads the data-state of the real program, executes
the next step on that data, and compares the results to those of the original program. Disregarding the fact
that the sentinal may share the vulnerabilities of the original program, this setup is roughly equivalent to
what our system would do if every constraint were monitored.

It is easy to see that this is an extemely resource-intensive approach; information has to be communicated
between the two programs before and after each step, and this requires the addition of many additional steps
for each step in the original program. Furthermore, communication between processes is often much slower
than actual computation. Using the above analogy, it is therefore evident that monitoring all aspects of a
program’s behavior is a practical impossibility. (In fact, the problem can be far worse for a system that
really does use semantic constraints, because there are constraints for most or all execution paths. Simply
maintaining this volume of semantic information can impose excessive resource demands even if the original
program was relatively small by modern standards.)

Our approach is to monitor only a subset of the possible behavioral constraints. Diversity, in the sense
of Section 3, is created by selecting these constraints at random (perhaps according to a non-uniform distr-
bution), or, if there really are redundant copies of the program running in tandem, having different replicas
monitor different constraints.

The second issue mentioned above is that we cannot obtain a tractable, abstract description of a program’s
behavior. If we could do so, we could easily determine which programs halt and which ones do not, and
this is known to be impossible [25]. In practice, there are a number of constructs, including recursion and
pointers, that are hard to handle abstractly. Our solution to this problem is, once again, that we do not
monitor all aspects of a program’s behavior. Our approach of only monitoring selected constraints allows us
to simply omit constraints for programming constructs that our system cannot handle.

An additional advantage of this approach is that it makes our system incremental. If some aspects of a
program’s behavior can be abstracted in prinicple, but we have not yet implemented the necessary functions
in our constraint extraction system, this does not hinder our approach. It simply works with whatever
semantic information is available.

5.2 Semantic constraints

This section describes the format of the semantic constraints our system extracts from software. Currently,
the system works with C/C++ programs, but the actual constraint extraction algorithm uses an intermediate
representation, a static dataflow graph, which is language independent.

In our system, a constraint is comprised of three parts

1. The antecedant, which describes a particular control path within a program. Usually, this is not a
complete control path from the entry point of the program to an exit point, but rather a path from
the entry point of some function to some statement within a function.

2. A consequent, which identifies a statement that will be executed if the control path described in the
antecedant is taken.
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3. A set of data dependancies, which describe where the variables used in the consequent statement were
last defined, assuming the path described in the antecedant has been taken.

The structure of the antecedant is perhaps the most complex aspect of our constraints. An antecedant
contains a number of decision nodes, which correspond to boolean-valued expressions in the original pro-
gram. The only boolean expressions included are those that cannot, themselves, be decomposed into simpler
boolean expressions. Each decision node is annotated with a label true or false, describing what value the
corresponding expression must have for the program to follow the path that the antecedant is describing.

To allow the characterization of loops, each element of a constraint (the decision nodes, as well as
the statement nodes, and the variables in the data-dependancies) is also annotated with a series of loop
subscripts. The number of loop subscripts is the same as the number of loops that enclose the statement,
decision, or variable being subscripted. Conceptually, each subscript describes how many times the loop in
question has been executed on the given control path, meaning that these subscripts are part of the path
description. However, such a subscript takes on only one of three values: 1, denoting the first iteration of the
corresponding loop, n, denoting any other iteration than the first, and n−1, denoting the previous iteration,
that is, the one that occured before the one referred to by an n subscript. In short, loop subscripts provide
the information needed to describe the behavior of loops inductively: a constraint that has “1” subscripts
is used to establish the base case, and constraints containing “n” and “n − 1” loop subscripts describe the
inductive step.

For example, consider the following simple program:

main()
{

int a;

for (int i = 0; i < 10; i++)
a = a + 1;

b = a;
}

The constraints pertaining to the variable a are given below. Each constraint has been textually expanded
to make it easier to read; the section labelled PATH describes the antecedant, the section labeled STATEMENT
describes the consequent, and the section labeled DEF-REF PAIRS describes the data dependencies.

PATH:
{ENTRY: main( )} loc=0 -- ALWAYS-->

STATEMENT:
{int a = 0 ; }loc=4

DEF-REF PAIRS:

PATH:
{ENTRY: main( )} loc=0 -- ALWAYS-->
{i < 10 } loc=9 loops=0 -- TRUE-->

STATEMENT:
{a = a + 1 }loc=12 loops=0

DEF-REF PAIRS:
Variable: a DEF: {int a = 0 ; }loc=4

PATH:
{ENTRY: main( )} loc=0 -- ALWAYS-->
{i < 10 } loc=9 loops=N-1 -- TRUE-->
{i < 10 } loc=9 loops=N -- TRUE-->
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STATEMENT:
{a = a + 1 }loc=12 loops=N

DEF-REF PAIRS:
Variable: a DEF: {a = a + 1 }loc=12 loops=N-1

PATH:
{ENTRY: main( )} loc=0 -- ALWAYS-->
{i < 10 } loc=12 loops=0 -- FALSE-->

STATEMENT:
{b = a }loc=20

DEF-REF PAIRS:
Variable: a DEF: {int a = 0 ; }loc=4

PATH:
{ENTRY: main( )} loc=0 -- ALWAYS-->
{i < 10 } loc=12 loops=N-1 -- TRUE-->
{i < 10 } loc=12 loops=N -- FALSE-->

STATEMENT:
{b = a }loc=20

DEF-REF PAIRS:
Variable: a DEF: {a = a + 1 }loc=15 loops=N-1

There are five constraints pertaining to the variable a:

1. The first constraint refers to the initialization of a on the third line of the program. The path contains
a statement saying that the entry to the function main is always executed and that this is the only
requirement for reaching a’s initialization. (“Always” constraints and “never” constraints are logically
somwehat superfluous, but they are useful when the constraints are manipluated by other programs.
For example, this particular constraint can be used to determine which function the constraints are
for.)

2. This constraint states that if the condition (i < 10) on line 5 is true, before entering the loop on lines
5 and six, (e.g., the zeroth iteration), then the assignment a = a + 1 on line six will be executed for
the first time. The data dependancy tells us that, prior to the execution of this assignment statement,
a will have the value given to it at location 4 (on the third line). Note that this value can be obtained
from the first constraint.

3. This constraint describes the loop inductively. If the condition (i < 10) was true on the previous
iteration and it is still true on the current iteration, then the assignment statement on line six will
be executed. In our system, the constraint {i < 10 } loc=9 loops=N-1 -- TRUE--> implies that
location nine, associated with the condition (i < 10), was actually executed on the n− 1st iteration,
though the formatting of the constraints above does not make that fact explicit. Because of this, the
constraint does not refer to the first loop iteration, and the value of a does not come from line three.
Instead it comes from the previous iteration of line six, as the data dependency states.

4. This constraint describes the assignment on line eight for the path where the loop is not executed. The
preconditions of the constraint describe an infeasible path, but infeasible paths are an inevitable part
of symbolic execution since their detection leads to undecidable problems. (Moreover, our constraint
generation system, which created the constraints in our example, is not also tasked with the semantic
analysis of those constraints.)

5. This constraint describes the assignment statement on line eight for the path on which the loop is
executed. It states that, for any n where the condition on line six is executed but evaluates to false,
and where the condition was executed on a previous iteration and evaluated to true (implying that the
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loop was entered), the assigment on line six will be executed and the value of a in that assignment will
be the one assigned on line six during the n − 1st iteration.

The constraints given here do not contain enough information to find the final value of b, but this is only
because the constraints not involving a were omitted for brevity. The full constraint set allows a simple,
brute-force deduction of b’s value by forward chaining. Such an approach involves several instantations of
the loop constraints — the second and third constraints in the example — in which n is replaced by actual
numbers. The information given is also sufficient for an approach that unravels the loop by induction, but
we have not yet implemented such a system.

5.3 Constraint Extraction System

Our constraint extraction system builds semantic constraints from the static dataflow graph (SDF) of a
program. A static dataflow graph encodes the dataflow of a program (as the name suggests), and thus allows
us to extract the constraints described in the previous section. (The advantage of using the SDF as an
intermediate representation is that it abstracts away many language dependencies).

The SDF is a graph whose nodes represent syntactic constructs in a program (usually statements or ex-
pressions), and whose edges represent the flow of control between these constructs.

The nodes isolate the information needed to determine the semantic behavior of the program at a par-
ticular time. The following syntactic constructs are represented as nodes in the SDF:

• expressions that represent variable definitions, variable uses, and variable declarations.

• starting points of loops.

• expressions whose value affects the flow of control.

The SDF has a directed edge from node A to node B if the code represented by node A can be executed
immediately before the code represented by B, without the intervening execution of code represented by other
nodes. To determine what loops enclose a statement (as is necessary for the generation of the constraints
we described in the previous section), we can simply follow the control-flow paths from a statement to check
if they lead back to the start of a loop.

However, the SDF does not have a representation for the flow of control in and out of functions when
they are called. In addition, definitions and uses of globally declared variables are not represented. In short,
the SDF does not capture all information needed to get a complete description of the program’s behavior.
Our system is designed to work even when limited behavioral information is available (see Section 6.1.1), so
while the addition of more information can improve its performance, the absence of some information does
not break the system.

6 Applications of the Mutation Scripting System

The mutation scripting system described above was intended to be a by-product of this research that would
be useful in and of itself. Over the years, RST has developed a large number of software analysis systems that
instrument source code, used for such diverse purposes as coverage analysis, fault-injection, and automated
test data generation as well as software mutation. In the past, the software that performs source-code
instrumentation has taken the form of compiled, executable code, and it proved somewhat time-consuming
to modify such a system when the need arose for new types of software instrumentation. The mutation
scripting system was intended as a general-purpose language that would allow new software instrumentation
techniques to be implemented as scripts. The idea was to isolate those parts of the instrumentation technology
that change from one system to the next from those that are always the same. This simplifies the task of
the person designing a new software instrumentation prototype.

The mutation system has the overall aim of letting a developer specify what source-code constructs
should be modified during instrumentation, and how they should be changed, not worrying about how these
constructs were actually found and modified in the source code. With our existing technology, this had been
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somewhat difficult because the code that performs the instrumentation was woven into a traversal of a parse
tree built from the source-code being instrumented.

Besides allowing tailored source-code instrumentation, such technology has a number of other potential
applications:

Generalized patch scripts It is often necessary for software developers to release patches for existing code,
either to upgrade the code or fix bugs. But existing patch systems are text based; a software patch
might contain instructions like “replace the 103rd line of the program with the line if (x >= 10),”
for example.

But suppose it were desired to replace all calls to the function strcopy() in a C/C++ program with
calls to strncopy(). (strcopy is a function notoriously vulnerable to buffer-overflow attacks because
it copies a string of characters to a new memory location without checking if it overwrites too much
memory. strncopy() also copies strings of characters but it does bounds-checking.) This sort of
replacement is difficult (in the general case) for text-based systems because the sequence of charaters
“strcopy” in the source code doesn’t necessarily indicate an actual call to the strcopy function. Also,
the arguments of the strcopy need to be changed in a context-sensitive way to make a successful call
to strncopy.

In order to make such patches to source code automatically, a patching system needs to know about
the syntactic structure of the source code being modified. Our mutation scripting system is aware of
a program’s syntactic structure and might thus be used as a basis of more powerful software patches.

Data collection and insertion In security-related applications such as intrusion detection, it is often
desirable to collect data about a program while it is running. When source-code is available, it is
once again appealing to instrument the source-code in order to collect this information, but such
instrumentation is easier to carry out using a syntax-based software instrumentation system.

In unit-testing (testing software one function at a time), we want to observe the return values of
functions (as well as other data that the function modifies), and we also want to change the parameters
of the function, which essentially provides different test inputs to the function. Usually this is done by
writing test drivers that isolate the component being testing while simulating the software where
the component would normally be used. Source-code instrumentation — if it is easy enough to do —
can allow testers to change the parameters of a component and monitor its behvior in place, that is,
within the context of a larger program. This may be simpler than writing test harnesses, and it also
helps alleviate concerns that the test harness might fail to provide an accurate picture of what would
happen if the component were actually part of a larger program.

Tailored assertions and watchpoints A number of technologies developed at RST involve the use of
assertions that signal when software enters an unsafe, insecure, or failure-prone state. This is also
done with software instrumentation. But if such a tool is used by third parties who cannot recompile
the source-code instrumentor, then those third parties are limited to the types of assertions that
the original developers anticipated. If assertions could be placed using generalized instrumentation
scripts, novel types of assertions could be automatically placed into source code without recompiling
the assertion-placement tool. Thus, an assertion-placement tool that uses instrumentation scripts
might be quite a bit more useful than current assertion-placement technology. Mutation scripting can
provide this capability.

6.1 Virtual Redundancy: A Constraint Monitoring System

One application of semantic constraints is the monitoring of programs during execution. Many malicious
attacks invlove altering a program’s behavior so that it performs actions on behalf of the attacker. The
most notorious of these are buffer-overflow attacks, but programs can also be attacked in some cases using
heap-overflow attacks or by modifying the image of the executable in memory. In contrast, viruses modify
executable programs on disc.
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Constraint monitoring is the process of monitoring software behavior to verify that its behavior conforms
to that specified by semantic constraints. To descibe the process succinctly, the variables that appear in
the semantic constraints are monitored while the program executes. A constraint monitor verifies that the
values of these variables are consistent with the behavior described in the constraints.

The purpose of constraint monitoring is to detect deviations between the actual behavior of the program
and the behavior described in the source code. Since the constraints encode the semantics of program as
described by the source code, subsequent modifications of that behavior — whether caused by a virus, a
buffer-overflow attack, or some other malicious activity — will show up as deviations from the behavior
encoded in the constraints, and this allows the constraint monitor to act as an intrusion detection system.
(Other potential uses will be outlined in Section 6.1.1 below.)

Our constraint monitoring system uses the above constraints, in conjunction with source-code instrumen-
tation of the original program, to confirm that the program is, in fact, behaving as the constraints require.
An external constraint monitor, running in tandem with the original program, monitors decision points, data
definitions, and data uses. This information is used to ensure that the consequents and data dependencies
of any constraint are satisfied whenever the antecedent becomes true. Since the consequent and data depen-
dencies may not become true at the same time as the antecedent, there is a timeout that delays the raising
of an alarm when information is not received. An alarm is also raised if incorrect information is received
from a program.

What makes constraint monitoring different from other types of intrusion detection is the fine focus of the
monitoring activity. That is, very minute deviations from normal behavior can be detected. For example,
the prototype we built under this contract detects changes such as a replacement of x++ with ++x in C/C++
programs. Furthermore, a constraint-based intrusion detection system is not susceptible to false alarms,
since it encodes only the behavior specified in the source code.

In a sense, using a constraint monitor is like running two copies of a program in tandem, having one
program verify the actions of the other at every step. Indeed, this type of virtual redundancy also provides
diversity, since the attacker must compromise the constraint monitoring system to remain undetected.

The question is whether this type of “virtual redundancy” really deserves the name. That is, can we
achieve the other benefits of redundancy as well with a constraint monitoring system? Can we, for example,
implement voting or other redunancy-based paradigms to correct abberrant behavior? Can we obtain a high
degree of diversity with virtual redundancy? (We noted that having the constraint monitor run in tandem
with the original program introduces some diversity, since the constraint monitor works differently from the
original program, but that only gives us twofold diversity.)

We will argue below that these benefits can be obtained through virtual redundancy as well. But first, we
have to address a drawback of the constraint monitoring apporach which affects the way virtual redundancy
would be implemented in a practical system.

6.1.1 The practicality of constraint monitoring, and the role of diversity

As we have suggested already, this constraint monitoring system is sensitive to very small aberrations in a
program’s behavior. For example, as small a change as changing a C/C++ preincrement to a postincrement
triggers an alarm when the code is executed, assuming that the code in question is also being monitored.
Presumably, this makes the code especially resilient to viruses, though we did not have a Unix virus with
which to test this. The malicious attacks we tested against our system were buffer-overflow attacks, which
are detected because the flow of information to the constraint monitor is interrupted.

As an anomaly detection system, the constraint monitor is much more sensitive than other program-
based anomaly detection systems we know of, since they only monitor the interaction of the program with
the operating system. In addition, the constraint monitor knows the exact semantics of the program, so false
positives are only possible when unexpected delays cause a timeout alarm.

A practical problem with the constraint monitoring system we have described is that the number of
constraints can be large. For example, the well-known toy program triangle generates about 600 constraints.
For real programs, the number of constraints can quickly become intractable, given that the constraint
monitoring system has to work in real time. This is not a shortcoming of our system in particular; it is
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observed whenever there is a need for abstract representations of program behavior that can reasoned about
automatically. (In particular, symbolic execution systems, see [7, 22] for example, run into this problem.)

However, another straightforward approach to reducing the number of constraints that must be monitored
— an approach consistent with the idea of redundancy and diversity — is to monitor only a randomly selected
subset of the available constraints. This gives an attacker a chance to avoid detection, but the paradigm of
diversity with randomization, described in Section 3, takes this into account. In redundant systems, different
aspects of program behavior can be monitored in different replicas, but the technique can also be applied to a
single program for which the constraints being monitored periodically change. With this approach, diversity
could be achieved by having different versions of a program (installed at different sites, perhaps) monitor
different aspects of program behavior. Attackers may be able to subvert some replicas of the monitored
program, but the ultimate aim of diversity is achieved, because there is a certain probability that a given
attack against a given system will be detected.

By monitoring only some constraints, we also overcome one of the traditional problems encountered
during abstract analysis of software semantics: it is not currently possible to reason about all possible
aspects of software semantics. In fact, it is one of the classical results of theoretical computer science that no
such analysis is possible [23]. In practice, difficulties are encountered during the analysis of indefinite loops
and pointers (with possible aliasing).

Note that it is useful if attackers can be kept in the dark about which aspects of a program’s behavior
are being monitored. This is a useful tool for software diversification if changes can be made quickly enough,
but if it takes too much time the approach deteriorates into nothing more than security by obscurity. But
it is relatively easy to change the constraints monitored by a system like ours; certainly easier than other
potential approaches to diversity that involve recompiling the applications that are supposed to be diverse.

An additional benefit of such an approach is that the constraints that are successful in detecting an attack
can easily be disseminated, so that even systems that were not able to detect the attack become able to do
so. New replicas of a program are thus immune to past attacks.

In the next section, we will discuss how these ideas might be applied in a practical intrusion-resistant
system.

6.1.2 Diversity in a single executable unit

Early in this report, we discussed the idea of diverse and redundant executables as a way to delay and
potentially thwart malicious attacks. We saw that if a system remains vulnerable to old attacks, then an
attacker may be relatively successful even though the system being attacked contains redundancy.

In practical terms this is a worst-case scenario. The attacker has to have the wherwithall to develop new
attacks. At the current time, new attacks are developed by a relatively small core of individuals, scripted,
and replayed by other attackers with less technical ability. Under this attack paradigm, the development of
new attacks is quite a bit more expensive than the replay of old attacks. We are accustomed to seeing large
sectors of the information infrastructure undermined very quickly by just a single, scripted attack or virus,
and it does not seem as though this kind of rapid, catastrophic destruction could be carried out against a
redundant system.

However, the intent of this project was to protect information systems against stratgeic attacks, and by
that we mean attacks carried out by technically skilled individuals who are capable of developing new attacks
and intent on doing so until some target system has been successfully subverted.

To protect against such attacks, it would be desirable for an information system to recover from past
attacks, and to do so in such a way that after recovery, the system is no longer vulnerable to the same
attacks. In other words (according to the results described earlier in this report), each individual replica in
a redundant system should be able to reconfigure itself after an attack.

This paradigm of dynamic reconfiguration has an additional advantage: systems could be reconfigured
even when no attacks have taken place, in order to impair the attacker’s intelligence-gathering efforts. Indeed,
red-team experiments carried out by DARPA have suggested that this approach is effective. The easier it
is to reconfigure a system, the more often reconfiguration can take place, and the more effective this approach
becomes.
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Figure 4: Illustration of a constraint monitor being used to intercept, monitor, and possibly alter the value of a

program variable. The program has been instrumented to give the constraint monitor access to the variable value,

and when the program’s execution reaches the point where the variable is referenced, execution temporarily passes

to the constraint monitor, where the value is checked and possibly modified before control is returned to the original

application. For simplicity, the figure only represents the interception of a single variable’s value at a single location.

In the DARPA red-team experiments, the apparent network topology of a system was dynamically re-
configured at various intervals to delay the progress of attacks. This was prohibitively difficult to implement.
But this proposal deals with redundancy and diveristy of executable applications, and it might be quite
a bit harder to implement a system that quickly and automatically mutated the applications on a single
information system.

This leads to the idea of introducing diversity into a single executable program. Here, the application
itself does not change, but certain aspects of its behavior do change at random. The changes may effect
the behavior of the application itself, or it may just affect the measures used to detect and/or recover from
attacks. Semantic constraints would be a key element of this approach.

The idea is illustrated in Figure 4. The original application is essentially unchanged, but it is augmented
with a second system that monitors and potentially alters its behavior. This second system has built-in
diversity because its behavior is reconfigurable. Below, we will discuss exactly what functions this second
susbsystem might perform in order to provide the benefits of diversity, but we start by noting the two
inherent benefits of this approach:

1. Two copies of the same application, running on different hosts, are slightly different in their behavior.
This makes it harder for a single attack to be repeated against both hosts.

2. A given copy of the application changes its behavior over time. This makes it harder to repeat the
same attack twice against the same host.

.
To understand this approach, it is necessary to understand the details of the constraint monitoring

subsystem in more detail. Recall that the monitoring subsystem looks at the application’s internal state to
ensure that the application is behaving as it should be. This monitoring is accomplished by instrumentation
in which small fragments of the program are essentially wrapped.

For example, if a program contains the statement

x = y + 1;
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and the goal is to monitor the value of the expression y+1 when that statement is executed. Monitoring is
accomplished by instrumenting the code as follows:

x = wrap_integer_expression(y + 1);

The function wrap integer expression is used to record the value of y + 1. Normally, wrap integer expression
returns the value of y + 1 to ensure that the behavior monitor does not interfere with the normal operation
of the program.

However, wrap integer expression could also return a different value. Therefore, if many or all of
the expressions in a program are wrapped in this way, we can exercise very fine-grained control over the
program’s behavior. Thus, the behavior monitoring system allows diversity to be introduced in a number of
ways.

Detection of anomalous behavior The behavior monitoring system can serve a a fine-grained intrusion
detector, as was already discussed above. The idea is to ensure that the program’s behavior conforms to
the behavior expressed in the semantic constraints extracted from the program. Normally, the program
should do exactly what the constraints say since the constraints were obtained from the program itself.
But many attacks involve some type of modification by the attacker of the program’s behavior. Stack-
smashing attacks [21] are a notorious example. Even subtle changes in program behavior can be
detected as deviations from the behavior described in the constraints.

We have already pointed out that it is impractical to monitor all aspects of program behavior, but
dynamic reconfiguration of the monitoring subsystem makes it difficult to anticipate which aspects of
its behavior are being monitored.

Detection of modified code Many attacks work by modifying existing programs. For example, when a
virus infects an executable file, it does so by adding its own malicious functionality to the application.
Some attacks also involve modifying the binary image of system applications while they are cached in
memory accessible to a malicious user. For a constraint monitoring system, such modifications show
up as runtime behavior changes, and can be detected as in the previous case.

Recovery from attacks In the above examples, attacks are detected but nothing is done about them.
They are essentially just intrusion detection systems that rely on some other mechanism to respond to
the intrusion.

However, a constraint monitoring system knows how a program should behave and it can correct that
behavior by reinjecting the correct data-state. This appears feasible because (a) each constraint deals
with only a limited number of different aspects of the data-state, and (b), those parts of the data-
state are being monitored already, and past experience suggests that when software instrumentation
is used to perform such monitoring, it is often straightforward to also modify the values that are being
monitored.

7 Conclusion

To discuss the practical implications of our analytical results, it is useful to (informally) define two threat
models.

• The attacker exploits a vulnerability that is visible in some artifact that is (or is supposed to be)
subjected to validation during the software development process.

• The attacker exploits a vulnerability that is not visible in any such artifact.

In the first case, the vulnerability might be categorized as a sort of software flaw; it is analogous to
any traditional software flaw except that it leads to the violation of a security-oriented specification rather
than the violation of a correctness-oriented specification. Although assuring software correctness is difficult
enough, there is hope (at least) that this type of threat can be dealt with using traditional methods for
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software assurance (with the exception of statistically-based techniques, since these inherently assume a
non-malicious adversary).

In the second case, which unfortunately seems to be the predominant one in practice, the attacker
exploits a vulnerability resulting from behavior not visible in the software artifacts being examined. For
example, high-level representations of software (such as the software source code) abstract away the details
of the parameter passing mechanism, but buffer-overflow attacks [21] exploit that mechanism. Today we
know that certain high-level programming constructs lead to buffer-overflow vulnerabilities, so in some sense
these vulnerabilities can now be classified as software flaws. The greatest difficulty seems to be caused by
vulnerabilities that are both unknown and invisible in any software artifacts that are subjected to inspection.

In principle, automated diversity seems to be a good way to address such vulnerabilities. To be sure,
the diverse software has to adhere to certain requirements and specifications, since the replicas will not be
interchangeable otherwise. If vulnerabilities exist in these specifications they will simply be replicated across
all copies of the software. But such vulnerabilities can often be detected by other methods: to automate the
diversification process, we need some sort of written description of what a software module does, and that
written specification can be scrutinized. To address the second (and more dangerous) class of vulnerabilities
listed at the start of this section, we need to alter those aspects of program behavior that are not outlined
in any specification, and that is precisely what automated diversification does.

The drawback of the technique employed in this project was that mutations needed to be specified
explicitly. This is undesirable because very many things need to be mutated in order to get a useful increase
in survivability. In a sense — going back to the two classes of vulnerabilities described at the start of the
section — the person who specifies the mutations must think of everything that was overlooked by the person
inspecting the code. The difficulty of doing this is the very thing that makes certain vulnerabilities so
dangerous in the first place.

One way to solve this problem is to redesign the entire system from the ground up, resulting in what
we have characterized as hyperdiversity. But the reasoning above seems to imply that survivability can be
improved only in this way. With current technology, such a solution cannot be automated.

In summary, it seems that automated diversification seems to require an intensional mutation approach
— one where it is only necessary to provide implicit descriptions of the mutations. An example of intensional
mutation might be a directive that says “replace all interprocess communication mechanisms.” In contrast,
current software mutation technology is extensional in the sense that each mutation has to be described
explicitly. We can automatically modify certain aspects of all IPC mechanisms, but to truly “replace all
interprocess communication mechanisms” more than once, a human has to implement several interprocess
communication mechanisms by hand because each primitive has to be implemented in a different way. As
far as we know, this cannot currently be automated.

Before concluding, we should point out that there are other forms of diversification that are not encom-
passed in the summary above and appear, at least on the surface, to be more readily implementable. For
example, temporal diversity might be used to prevent simultaneous execution of the same data on different
systems. In some sense computer networks already possess temporal diversity, and indeed one might argue
that many past worm and virus attacks would have been far more catastrophic if it were not so. But truly
effective temporal diversity would require a response mechanism that protects those systems that are not
immediately compromised. Data diversity [2] is another potential solution; this essentially means mutating
data instead of code while, once again, preserving the original meaning.
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